03-Feb-94 U320 scanu - User Customized Histogramming PAGE 1

Section Contents
010 Introduction
020 General Features
025 Using Shared Histogram Memory Segments (DECstations only)
030 Discussion of User-supplied Routine DRRSUB
040 Histogram Specification Routines (called by DRRSUB)
050 Simple Example of User-supplied Routine DRRSUB
060 Discussion of User-supplied Routine HISSUB
070 Discussion of Histogram Incrementing Routines (options)
080 Discussion of 2-D Free-Form Gating
090 Comments on 1-D Gating
100 How to Create and Run Customized scanu Programs
110 Example DRRSUB
120 Example HISSUB
130 List of Commands

U320.010 Introduction

A non-CHIL histogram generating procedure has been defined. This is called
the UCUS (for User CUStomized) procedure and the associated tape scan
package is called scanu. I started to call this the Fully User Customized
procedure, since CHIL is partially user customizable, but then thought
better of it.

scanu is essentially the same (with a few minor changes) as Jim Beene’s
scanvdm which was derived from the VAX version of SCANM. Jim re-wrote all
tape and disk I/0 routines, tape control routines and all tape and file
opening routines for UNIX compatibility. He also added several useful
features and produced a user document which I have encorporated into this
document. The objective here is to '"standardize things" by placing all
required libraries in the /usr/hhirf/ directory and assuming
responsibility for software maintenance and user documentation.

Filename Extensions (.drr & .his)

I have chosen to make lower case filename extensions (.drr & .his) the
standard for UNIX systems rather than (.DRR & .HIS) as used in scanvdm. I
can’t make a STRONG case for this but it seems a bit easier; 1) most mnames
in UNIX are lower case, you don’t have to shift to type the name
extension; 2) when you copy from the VAX filenames become lower case; 3)
damm can handle it either way.

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 2

U320.020 General Features

...

...

3)...

(4)...

(5)...

6)...

(7m...

.The scanu main package provides for tape reading & control, command

processing, user command processing, etc. in the usual way.

.A11 histograms are generated in memory which is allocated via a

request to the '"system", therefore, the maximum histogram size is
determined by the amount of memory available and will vary with the
DECstation being used, the time of day, etc.

.UCUS & CHIL procedures use the same .his and .drr file structures.

.A proper .drr file may either exist or you must provide a routine,

DRRSUB, to create it at run time. See SEC# U320.030 thru U320.050.

.The .his file may either exist or you will be asked for permission

to create it at run time.

.The main program calls user-supplied routine, HISSUB(IBUF,N), with

an INTEGER*2 event buffer IBUF which may contain a raw buffer from
tape (default) or a single packed event (requested by the CMD SEBU).
If a single event buffer is chosen, N is the number of words in
IBUF (the FFFF is not passed). For the raw tape buffer case, N is
the buffer length (normally 4096).

.histogramming is accomplished by user-supplied calls, normally from

routine HISSUB, to one of the following standard routines:

COUNT1(1ID,IX,JY) ;For no limit-checking, ranging, compression
COUNT1C(ID,IX,JY) ;For limit-checking, ranging
COUNT1CC(ID,IX,JY) ;For limit-checking, ranging, compression

Where, ID is a histogram ID-number in the range 1 to 8000. IX and
JY are X- and Y-channel numbers in the range 0 to whatever. For 1-D
histograms, JY is ignored but must be supplied. See SEC# U320.070.

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 3

U320.025 Using Shared Histogram Memory Segments (DECstations only)

Program scanu can be requested to generate histograms in either a shared
or a local memory segment as indicated below:

scanu name ;Starts scanu using a shared memory segment (default)
scanu name local ;Starts scanu using a local memory segment

The advantage of using the shared segment is that damm can access
histograms (in memory) as they are being generated without waiting for an
end or a hup.

WARNING!! if scanu should terminate abnormally (core dump), the shared
segment will not be released as it normally would. You will need to
perform the cleanup operation shown below, otherwise the system will
eventually be eaten up with "abandoned memory segments'.

Type: /usr/hhirf/shm_fixup name

Where, name is the his-file name prefix that you used in starting scanu.

IMPORTANT!!

If you do not run shm_fixup at the time of the "abnormal termination" and
the machine becomes almost inoperable due to the memory tied up with
abandoned segments, do the following: Find these abandoned segments by
displaying all files with the .shm name extension. If you find a file
name.shm and are not currently running scanu or scan with name.his, then
you have found an abandoned segment and should run shm_fixup as described
above.

Under certain conditions, abandoned segments may not have an associated
shm-file. To find and remove these do the following.

Type: ipcs ;To display shared mmemory segments & IDs

Type: ipcrm -m ID ;To remove shared memory segment ID

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 4
U320.030 Discussion of User-supplied Routine DRRSUB

The basic function of a DRRSUB is to define histogram specifications and
write a HHIRF form directory file (.drr file). It is called ONCE by a
scanu task, during the initialization process, at the beginning of a scan,
and builds a HHIRF format histogram directory file (.drr file). The same
information is used to allocate a .his file, and to determine how much
memory to request from the 0S for histogram storage. You can make it as
elaborate as you 1like, with user prompting, etc.(for example you could
test for the existence of a directory file, and if it exists ask the wuser
if he wants to recreate it or not). The call sequence of a DRRSUB is:

SUBROUTINE DRRSUB(IEXIST)
INTEGER IEXIST

C
C At entry IEXIST will be 1 if a .drr file of the proper name already
C exists and O otherwise. The basic structure of a DRRSUB is:
C

SUBROUTINE DRRSUB(IEXIST)

INTEGER IEXIST
C !tests and/or user interaction
C

CALL DRRMAKE !make new or overwrite existing DRR
C !calls to HDEF, HD1D or HD2D (up to 2008,
C 'one for each histogram being defined.
C !See call sequence below)

CALL ENDRR

RETURN

END

A DRRSUB is not required. A dummy DRRSUB is included in scanmlib and will
be linked if you don’t include one in your link list. It is a mno-op which
writes a message to the screen to the effect that it hasn’t done anything.
Using the dummy DRRSUB means that you are depending on the .drr file to
already exist, whose name matches that specified on your start command line
(e.g. "scanu name"). A directory file produced by CHIL works just as well
as one generated by fortran calls (they’re functionally identical).

DRRMAKE should not be called if you want to reuse an existing DRR, since
it destroys the information in the old .drr. The calls to DRRMAKE and
ENDRR are both required to generate a valid new .drr file and to finalize
the generation of histogram specs. There is no harm in regenerating a .drr
every time you run scanu, even though it’s always the same. This does not
result in a loss of information in the .his file. (Renewing a .drr file
doesn’t zero a .his file.)

U320.040 Histogram Specification Routines (called by DRRSUB)

There are three basic histogram definition routines, a general one HDEF
which allows up to 4 dimensional histograms, and HD1D and HD2D which are
specific to 1 and 2 dimensional histograms respectively. A DRRSUB should
consist of a series of calls to HDxx family routines (one call per
histogram) followed by a call to ENDRR (no arguments) which tells the
system you’re finished. A histogram directory is then listed for you on
stderror and on your log file.

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 5
U320.040 Histogram Specification Routines (continued)

Note that there are some philosophical differences between a histogram
specification in DRRSUB and a histogram definition in CHIL: some examples
of these differences will be mentioned here to illustrate basic concepts.
In CHIL, gates, conditions, etc. are directly associated with a histogram.
A call to a HDxx family routine only reserves space and assigns an ID
number, minimum and maximum parameter values and a compression factor to
the histogram. How you increment the histogram depends of the logic of the
fortran in your HISSUB. In CHIL, histograms are associated with parameter
numbers, and multiple H() and O0OH() specs are required to generate an
overlay of many parameters in to one HID. In a DRRSUB a single HDxx call
is all that is necessary. The HISSUB does the overlaying.

Call Sequence for HDEF - General Histogram Specification Routine
HDEF is really too general for most purposes and requires dimensioned
arrays, etc. So, read about HDEF but use routines HD1D and HD2D described

on following pages.

SUBROUTINE HDEF (

& HID, ' [INT] HIST. ID
& HDIM, ! [INT] HIST. DIMENSIONALITY (1-4)
& NHWPC, '[INT] NO. OF HALF WORDS PER CHANNEL (1 or 2)
& RAWL_LST, ! [INT ARR] LIST OF HDIM RAW PARAM LENGTHS
& HSTL_LST, ! [INT ARR] LIST OF HDIM HISTOG. PARAM LENG.
& MIN_LST, ![INT ARR] LIST OF HDIM "RANGE" MINIMA
& MAX_LST, ![INT ARR] LIST OF HDIM "RANGE" MAXIMA
& LABX, ! [CHAR*N] (N.LE.12) X-LABEL
& LABY, ! [CHAR*N] (N.LE.12) Y-LABEL
& TIT) ! [CHAR*N] (N.LE.40) TITLE FOR HISTOGRAM
C Kk o o KoK ok o K oK o o Kk o ok ok Kok ok ok o Kok o K oK o ok o o ko o K o o K ok o K sk ok ok sk o ok ok o Kok o Kok o K ok o sk ok

IMPLICIT INTEGER*4 (A-Z)

INTEGER*4 RAWL_LST(HDIM) ,HSTL_LST(HDIM),MIN_LST(HDIM) ,MAX_LST(HDIM)
CHARACTER* (*) LABX,LABY,TIT

ok sk s o e ok ks oo o e ok sk e ok sk o o ke ks s o ke ke s s e ke sk o s o o e ks o ks sk ok ks e o sk o

o Reserves 1 histogram per call.

o A call to DRRMAKE is required before first HDxx call.

o A call to ENDRR is required after last HDxx call.

o The four dummy arguments with suffix "_LST" (i.e. list)
in the HDEF call are (and the corresponding real arguments
must also be) arrays of dimension HDIM. The corresponding
dummy arguments (similar names, no "_LST" suffix) in
HD1D and HD2D are scalars. I leave off the "_LST" in the
following discussion.

o RAWL and HSTL are both automatically adjusted to the
nearest power of 2. working in powers of 2 is
traditional at HHIRF.

o A value of MIN different from O and/or a value of MAX
different from HSTL has the same effect as a range
specification in CHIL....e.g. the corresponding CHIL is
$LPR 15 = RAVL

$HID HID
H(15) L(HSTL) R(MIN,MAX).

OO0 0 0000000000000 0002O0

03-Feb-94 U320 scanu - User Customized Histogramming PAGE

U320.040 Histogram Specification Routines (continued)

O 000000000000

o A compression (given by RAWL/HSTL) is associated with
each parameter of each HID. This compression is applied for
you if you increment with COUNT1CC. COUNT1 and
COUNT1C ignore it. A compression is always a power of 2.

o Some of the arguments are "optional" in the sense that
that if the value is 0O in the call (not missing)

a sensible default will be taken:
RAWL IF O SET TO 2048.
HSTL IF O SET TO RAWL
MIN IF O LEFT AS O
MAX IF O SET TO HSTL-1

o Two special entries HD1D and HD2D are provided for
1d and 2d histograms. They are all you will ever need.
Forget HDEF.

Call Sequence for HD1D - 1D Histogram Specification Routine

QO

QaQQQQ

Call

QQ

QaQaQ

R

S

R

>k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 5k 3k >k k % >k %k >k %k >k 3k 3k 3k 3k 3k >k 3k >k >k >k Kk K >k K %k 5k 5k %k >k >k %k >k >k >k >k 3k *k %4 % >k >k

ENTRY HD1D - ENTRY FOR 1D HISTOGRAM
ok e o o ke ok sk s oo o ok sk o ke ks s sk ke ks s o ke ke sk s e ok sk o o ok ks s ek ks o e ok sk sk e ok ok sk

ENTRY HD1D(

HID, [INT] HIST. ID
NHWPC, [INT] NO. OF HALF WORDS PER CHANNEL (1 or 2)
RAWL, [INT] RAW PARAMETER LENGTH

!
!
!

HSTL, ! [INT] HISTOGRAMED PARAM LENGTH
!
!
!

MN, [INT] MINIMUM PARAM "RANGE" VALUE
MX, [INT] MAXIMUM PARAM "RANGE" VALUE
TIT) [CHAR*N] (N<40) TITLE FOR HISTOGRAM

sk ok ok s o o o o ok sk ok o o ok sk sk o sk ok o ok sk o o o ek ok ok o sk sk o o sk sk o o o ok sk ok ok o sk ok ok ok sk ok o
Same as HDEF but only for 1D. Note all numeric arguments are scalars
whereas in HDEF many are arrays.

See HDEF for values assumed when arguments are 0.

equence for HD2D - 2D Histogram Specification Routine

3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k k % 3 3k % ok 3k k K sk ok %k >k 3k ok 3k 3k ok >k 3k ok >k 3k 3k >k 3k 3k >k 3k 3k %k 3k 3k 3k >k 3k 3k >k 3 5k %k 3 3k %k 3 %k %k %k % >k

ENTRY HD2D - ENTRY FOR 2D HISTOGRAM
stk ok ok ok ok ok ok ok ok ok ok ok ok ok skl ok sk o o o ke ke ke ek sk sk s s e oo o o o o e ok ok ok sk sk o s e

ENTRY HD2D(

HID, ! [INT] HIST. ID

NHWPC, ! [INT] NO. OF HALF WORDS PER CHANNEL (1 or 2)
RAWLX, ! [INT] RAW X PARAM LENGTH

HSTLX, ! [INT] HISTOGRAMED X PARAM LENGTH
MNX, ! [INT] MINIMUM X PARAM "RANGE" VALUE
MXX, ! [INT] MAXIMUM X PARAM "RANGE" VALUE
RAWLY, ! [INT] RAW Y PARAM LENGTH

HSTLY, ! [INT] HISTOGRAMED Y PARAM LENGTH
MNY, ! [INT] MINIMUM Y PARAM "RANGE" VALUE
MXY, ! [INT] MAXIMUM Y PARAM "RANGE" VALUE
TIT) ! [CHAR*N] (N<40) TITLE FOR HISTOGRAM

ok sk s s o o o kol sk sk o o ok ok ksl o ok ke sk o ok ok sk s o e sk sk sk o ok ok sk e s ke ks s ok o k ko o ok ok sk ok o ok k ko o
Same as HDEF but only for 2D. Note all numeric arguments are scalars
whereas in HDEF many are arrays.

See HDEF for values assumed when arguments are O.

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 7
U320.050 Example User-supplied DRRSUB routine

A very simple DRRSUB, which books 7 1D histograms and one 2D histogram.
The ranging feature is illustrated by the 2D histogram. The H1D calls

depend on the defaulting of MAX to HSTL-1 (i.e. 511).

SUBROUTINE DRRSUB(IXST)

C
C Very simple example of a DRRSUB.
c
IMPLICIT INTEGER*4 (A-Z)
c
CALL DRRMAKE
C
DO I=1,7
CALL HD1D(I,2,2048,512,0,0,’RAW PARAM. HIST.’)
ENDDO
C
CALL HD2D(100,1,2048,2048,0,1000,2048,2048,27,2047,’2D HIST.’)
C
CALL ENDRR
END

sk sk e ks s ok ks o o ks o sk ks ke ok sk ke ok sk s ok sk s ok ko o ks e ks e ks sk o sk s ke ks ko e ok sk e ok sk ke ok sk o ek sk ok ok
Hisogram spec list produced by running scanu with the DRRSUB above.

8 HISTOGRAMS, 2030189 HALF-WORDS
ID-LIST:
1 2 3 4 5 6 7 100

HID DIM HWPC LEN(CH) COMPR MIN MAX OFFSET TITLE

1 1 2 512 4 0 511 0 RAW PARAM. HIST.
2 1 2 512 4 0 511 1024 RAW PARAM. HIST.
3 1 2 512 4 0 511 2048 RAW PARAM. HIST.
4 1 2 512 4 0 511 3072 RAW PARAM. HIST.
5 1 2 512 4 0 511 4096 RAW PARAM. HIST.
6 1 2 512 4 0 511 5120 RAW PARAM. HIST.
7 1 2 512 4 0 511 6144 RAW PARAM. HIST.
100 2 1 2023021 1 0 1000 7168 2D HIST.
1 27 2047

2k 2k >k >k >k >k 2k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k ok 5k k % %k >k >k >k %k >k 3k 3k 3k 2k >k >k >k %k >k %k >k >k >k >k 3k 3k >k 3k >k >k >k %k >k %k >k 3 3 3 >k %k 5k >k %k %k %k %k *k %

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 8
U320.060 Dicussion of User-supplied Routine HISSUB

The main program calls user-supplied routine, HISSUB(IBUF,N), with an
INTEGER*2 event buffer IBUF which may contain a raw buffer from tape
(default) or a single packed event (requested by the CMD SEBU). If a
single event buffer is chosen, N is the number of words in IBUF (the FFFF
is not passed). For the raw tape buffer case, N is the buffer length
(normally 4096) .

You can and will, of course, do many complicated things in HISSUB and the
simple example below is intended to illustrate the procedure only. In this
example, IBUF is assumed to contain a full tape buffer.

C$PROG HISSUB
SUBROUTINE HISSUB(IBUF,NB)

c
C 3k 3k 3k >k 3k >k S 3k sk >k o >k Sk 3k e >k e dk 3k 3k 3k ke 5k sk 5k Sk %k 3k 3 3k e >k 3k 5k Sk 3k 3k 3k >k k¢ %k e 3k 3k 3 3k A 5k Sk > ke 3k 3k ¢ %k e Kk %k >k %k 4 >k %k >k
C EXAMPLE HISSUB - WHICH HISTOGRAMS ALL RAW PARMS AT 1/4 RES
C - WITH HIS-ID = PARM-ID
C Sk 3k 3k >k 3k Sk 3k 3k >k 3k Sk k¢ k k 3k Sk k¢ >k Sk k¢ k Ak k¢ k >k 3k ke %k 3k Sk k¢ >k Sk 3k 3k Ak e %k Xk ke ke k¢ 3 ke k¢ >k A 3k k A 4 %k >k 3 Sk k¢ 3 Sk k¢ >k H %k %k *k
c
INTEGER*2 IBUF (%)
DATA ID/0O/
C

DO 100 I=1,NB
IF(IBUF(I).GE.0) GO TO 50
IF (IBUF(I) .EQ.’FFFF’X) THEN

ID=0
GO TO 100
ENDIF
ID=TAND(IBUF(I),’00FF’X)-1
GO TO 100
50 ID=ID+1

IX=IBUF(I)/4

CALL COUNT1(ID,IX,0)
100 CONTINUE

RETURN

END

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 9
U320.070 Discussion of Histogram Incrementing Routines

There are three histogram incrementing routines which differ only in the
amount of checking and manipulating they do for you. The routines are
COUNT1, COUNT1C and COUNT1CC. All perform the same "add one to histogram
HID" function but COUNT1, which is the fastest routine does the
incrementing without any checking or modification of parameter values.
COUNT1C (add 1 and check) does no compression does do "ranging" and limit
checking. COUNT1CC (add 1 check and compress) increments with compression
(divide input by power of 2) as well as ranging and limit checking. The
compression factor used by COUNT1CC and the range limits used by COUNT1CC
and COUNT1C are associated with a HID at the time the histogram is defined
with the HDxx family call in DRRSUB. Call sequences are given below.

SUBROUTINE COUNT1(ID,IX,IY)
INTEGER*4 ID,IX,IY

ok sk s oo e of ks oo o e ok s e ok sk o o ke ok s o o e e s o e ke s o e o o e ks oo ks ok ok ks o ok
Increments histogram with HID ID at IX and IY. No limit

checking or "ranging" is done. No compression is applied.

You’re on your own. This call is provided to let you do things
the fastest way you know how. IY is ignored for a 1D histogram.
NOTE!!! IX and IY are NOT HALF WORDS!!!

SUBROUTINE COUNT1C(ID,IX,IY)
INTEGER*4 ID,IX,IY

ok sk sk o o o o ks o o o o ok sk sk o o ok sk o o ok sk o o o sk o o o ke sk o o sk sk o o o ks o o o ok sk ok ok ok sk ok ok o o
Increments histogram with HID ID at IX and IY. Limit

checking is done, and CHIL type "ranging" is domne, but

no compression is applied. This lets you do your own
compressing or save a few instructions if you know it’s

not needed.

NOTE!!! IX and IY are NOT HALF WORDS!'!!

SUBROUTINE COUNT1CC(ID,IX,IY)
INTEGER*4 ID,IX,IY

st o o koo o koo sk s ke s ook s o e o o e o ks o e o s ke e ke e ke e ks o e o s sk s e o o
Increments histogram with HID ID at IX and IY. Limit

checking is done, and CHIL type "ranging" is done, and

the compression implied by the RAWL/HSTL ratio in your

HDxx call is applied.

NOTE!!! IX and IY are NOT HALF WORDS!'!'!

Note that no calls are provided to increment histograms with
dimensionality .GT. 2, so HDEF isn’t all that useful (that’s what I meant
by too general). You can actually increment a 3 or 4D histogram with
COUNT1 if you think about it a bit.

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 10
U320.080 Discussion of 2-D Free-Form Gating

2-D free-form gate testing must be carried out by wuser-supplied code
executed by routine HISSUB. This is also true for 1-D gate testing.
However, there are some intrinsic aids for 2-D gate testing and ban-file
processing. This is how it goes:

Reading in ban-files----—-———-———--—————————————————— - ————
One or more ban-files are opened and read in via the commands:

ban filel.ban
ban file2.ban
ban file3.ban

A1l entries (bananas) in each file are read in and stored in memory in the
order in which they occur in the file. Subsequent references to individual
bananas (stored in memory) may be via the stacking ordinal (sequence
number as read in) or via the ban-ID from the ban-file. If more than one
file 1is read in, one must make sure that all IDs are unique or one must
reference bananas by sequence number rather than ID-number. Non-unique IDs
will generate a warning at read-in time but it is not a fatal error. Also,
the ID numbers of bananas to be referenced by ID number must be limited to
the range of 1 to 8000. Any out-of-range IDs will generate a warning at
read-in time but, again, the error is not fatal.

Zeroing the in-memory bananas ----—-—---—-———————————————————— -

You may use the command banz to clear all in-memory bananas. Subsequently,
a new set may be read in as described above.

Functions which test 2-D Gates -------——-———-"-"——-"H—"""""-"—""—"""""""-—+-""":: -+

After the appropriate ban-files have been read in, one or both of the
following logical functions may be used by routine HISSUB to test X and Y
parameters against individual bananas.

LOGICAL FUNCTION BANTESTN(NG,IX,IY)

INTEGER*4 NG,IX,IY

LOGICAL FUNCTION BANTESTI(IG,IX,IY)

INTEGER*4 IG,IX,IY

BANTESTN references bananas via sequence numbers NG and BANTESTI references
bananas via ID-numbers IG. If the the IX,IY point is contained within the
specified banana, the value of the function is .TRUE., otherwise it .FALSE.
In NG or IG do not exist, .FALSE. is returned. There are no error messages.

(continued on next page)

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 11
U320.080 Discussion of Free-Form Gating (continued)

The following list summarizes the features and limitations of this type of
free-form gating support.

(1)....Multiple ban-files may be read in. All bananas in each file are
stored in memory.

(2)....A ban-ID directory is built as files are read in. If more than one
banana has the same ID, only the last one read will be entered in
the directory. A warning will be displayed at read-in time but the
error 1is mnot fatal (you can always reference via sequence # via
routine BANTESTN).

(3)....Up to 3000 bananas may be stored by the standard support routines.

(4)....Up to 8000 banana IDs can be accomodated by the standard routines.
ID numbers must be in he range of 1 through 4000 in order to be
entered into the ID-directory. If any IDs are out of range, a
warning will be given at read-in time but the error is not fatal
(you can always reference via sequence# via routine BANTESTN).

(5)....Up to 102400 banana channels (200 512-channel bananas) may be
stored in memory by the default routines from scanulib.

(6)....Up to 512000 banana channels (1000 512-channel bananas) may be
stored in memory by linking in the bansupl support package (see
below for how to do it).

(7)....Up to 1024000 banana channels (2000 512-channel bananas) may be
stored in memory by linking in the bansup2 support package (see
below for how to do it).

The make file shown below illustrates the 1linking of an executable
containing the bansupl banana support package. In this example, mydir and
mysubdir are intended to represent the directory and sub-directory
containing user-supplied routines.

DIRA= /usr/hhirf/
DIRB= /usr/users/mydir/mysubdir/
0BJS= $(DIRA)scanu.o $(DIRA)bansupl.o $(DIRB)scanusubs.o
LIBS= $(DIRA)scanulib.a $(DIRA)milib.a $(DIRA)jblibfl.a
$(DIRA)jb1ibC1.a $(DIRA)milib.a
scanu: $(0BJS) $(LIBS)
£77 -02 $(0BJS) $(LIBS) -o scanu

U320.090 Comments on 1-D Gating

At the present time there is no support package for 1-D gating - the user
has to do everything - open files, read in files, etc., etc. I do
anticipate that there will be some sort of 1-D gating support in the
future - possibly based on the use of GAF-files (see 1987 handbook SEC#
345.040). If this is done, damm will be upgraded to support the interactive
creation of such files.

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 12
U320.100 How to Create and Run Customized Scanu Programs

The make-files listed below (found in /usr/hhirf/scanu.make and in
&/home/upak/scanu.make) can be used as template for creating your own
customized make file.

For users of HHIRF DECstations

DIRA= /usr/hhirf/
DIRB= /usr/users/mydir/mysubdir/
0BJS= $(DIRA)scanu.o $(DIRB)scanusubsl.o $(DIRB)scanusubs2.o
LIBS= $(DIRA)scanulib.a $(DIRA)milib.a $(DIRA)jblibfl.a
$(DIRA) jblibcl.a $(DIRA)milib.a
scanu: $(0BJS) $(LIBS)
£77 -02 $(0BJS) $(LIBS) -o scanu

DIRA= /home/upak/
DIRB= /home/mydir/mysubdir/
0BJS= $(DIRA)scanu.o $(DIRB)scanusubsl.o $(DIRB)scanusubs2.o0
LIBS= $(DIRA)scanulib.a $(DIRA)milib.a $(DIRA)jblibfl.a
$(DIRA) jblibcl.a $(DIRA)milib.a
scanu: $(0BJS) $(LIBS)
£77 -02 $(0BJS) $(LIBS) -o scanu

Bold face entries in the make file examples above indicate places where
you will probably need to make changes. In this example, all customizing
routines are contained in two files from one directory, namely:

/usr/users/mydir/mysubdir/scanusubsl.o and ;For HHIRF DECstation users
/usr/users/mydir/mysubdir/scanusubs2.0

or

/home/mydir/mysubdir/scanusubsl.o and ;For SUNPAK users
/home/mydir/mysubdir/scanusubs2.o

Your routines may be located in more than one directory but I think you
will see how to do it. Assuming the name of the make-file is scanu.make
and the name of the executable is to be scanu, make it by typing:

make -f scanu.make scanu

Run it by typing:

scanu filnam

Where, filnam denotes the filename prefix of the his- & drr-files to be
used or created.

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 13
U320.110 Example DRRSUB

C$PROG DRRSUB
SUBROUTINE DRRSUB(IEXST)

C
C sk o o ks o o ke o o sk sk ke o sk ook sk o e s o e o s o e o sk sk s o ke ke e s e ks s o sk ek sk s ke e o ke o ko
C Example DRRSUB which reserves space for:
C 30 256-channel 1-D histograms at 32-bits/channel and
C 3 256%256-channel (range 0,199 0,199) 2-D histograms at 32-bits/chan
C sk e o ok ks o o ko o ok sk sk ke ok sk sk sk o ke s o ks o ks o e o sk e sk o ke ke e ks e ks ks o ok sk ek sk s ke ke o ke o ok ok o
C
IMPLICIT INTEGER*4 (A-Z)
C
CALL DRRMAKE
C
DO 10 HID=1,30
C
CALL HD1D(
& HID, 'HIST ID
& 2, !'# HWDS/CHANNEL
& 2048, 'RAW PARAM LENGTH
& 256, 'HIST PARAM LENGTH
& 0, 'MIN PARAM "RANGE" VALUE
& 255, 'MAX PARAM "RANGE" VALUE
& >1D HIS?) !TITLE
C
10 CONTINUE
C
DO 20 HID=31,33
CALL HD2D(
& HID, 'HIST ID
& 2, !'# HWDS/CHANNEL
& 2048, 'RAW PARAM X-LENGTH
& 256, 'HIST PARAM X-LENGTH
& 0, !MIN X-PAR "RANGE" VALUE
& 199, 'MAX X-PAR "RANGE" VALUE
& 2048, 'RAWW PARAM Y-LENGTH
& 256, 'HIST PARAM Y-LENGTH
& 0, 'MIN Y-PAR "RANGE" VALUE
& 199, 'MAX Y-PAR "RANGE" VALUE
& ’2D HIST’) !TITLE (40 BYTES MAX)
C
20 CONTINUE
C
CALL ENDRR
RETURN

END

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 14

U320.120 Example HISSUB

C$PROG HISSUB

eNoN NN N EE PN EY!

50

100

SUBROUTINE HISSUB(IBUF,NB)

sk o o ks o o ko o o ok sk ke ks sk sk o sk sk o ks o ks o ke o sk o ok sk o ok ko o ks e ks o ks o ok sk sk sk sk e ko o ko o k ok o
Example HISSUB

Processes full tape buffers IBUF (NB = number of words in IBUF).
Unpacks events into JBUF but only uses/tests/clears params 15,16,17)
Histograms all raw parameters at resolution specified by DRRSUB

with his-ID = parameter number.

Generates ungated 2-D histograms of 15,16 & 15,17 (HID=31,32)
Generates ban-gated 2-D histogram of 15,17 (HID=33)

sk s e ks o o ko o o ok sk ke ok sk sk sk s sk sk e ks o ks s e s sk sk sk e ke ko e ks ek sk ke e sk sk sk sk ke ko o ks o ok ok o

IMPLICIT INTEGER*4 (A-Z)
LOGICAL BANTESTI

INTEGER*2 IBUF (*)
INTEGER*4 JBUF (100)
DATA ID,JBUF/0,100%-1/

DO 100 I=1,NB
IF(IBUF(I).GE.0) GO TO 50

IF (IBUF(I) .EQ.’FFFF’X) THEN
J15=JBUF (15)
J16=JBUF (16)
J17=JBUF (17)
CALL COUNT1CC(31,J15,J16)
CALL COUNT1CC(32,J15,J17)
IF (BANTESTI(1,J15,J17)) CALL COUNT1CC(33,J15,J17)
IF (BANTESTI(2,J15,J17)) CALL COUNT1CC(33,J15,J17)

ID=0

JBUF (15)=-1
JBUF (16)=-1
JBUF (17)=-1
GO TO 100

ENDIF

ID=TIAND(IBUF(I),’OFFF’X)-1

GO TO 100

ID=ID+1

IF(ID.LE.0.OR.ID.GT.30) GO TO 100
IF (IBUF (I) .GT.2047) GO TO 100
IX=IBUF(I)

JBUF (ID)=IX
CALL COUNT1CC(ID,IX,0)
CONTINUE

RETURN
END

03-Feb-94 U320 scanu - User Customized Histogramming PAGE 15
U320.130 List of Commands

The standard scanu commands, which are also available in the form of
run-time help are listed below. Note: all commands may be entered in lower

case.

Commands Related Setup and Initializationc.iiiiiiinnnnnnnnn.

UCOM TEXT Send TEXT to USERCMP

BAN file.ban Open and read in bananas from file.ban

BANZ Zero (reset) in-memory banana list

SWAB Turn byte-swap ON

SWOF Turn byte-swap OFF (default)

SEBU Single-event buffers passed to HISSUB

MEBU Multiple-event buffers passed to HISSUB (default)
RECL N Set tape data record length to N-bytes (df1t=8192)
LOO1 NSKIP,NPPE Specify L0OO1 input format (see 87 Handbook, SEC# 300.060)
L002 Specify L002 input format (default)

LON Turns log-file output ON (default)

LOF Turns log-file output OFF

MSG TEXT Display TEXT (44 bytes) on (VDT)

Commands Related to Tape Assignment, Control, etc.

TAPE rxxx Assign tape unit (rxxx = rmtO, rmtl, rst0, etc)
REW Rewind tape-unit

CLOT Close tape-unit

CLUN Close and unload tape-unit

BR N Backspace N-records on tape-unit
FR N Forward N-records on tape-unit
BF N Backspace N-files on tape-unit

FF N Forward N-files in tape-unit
FIND ID Find HEADER # ID

Commands Related to Running (actual processing)c.ceeevuvnnnn.

ZERO Zero his-file & reset all POINTERS

ZBUC Zero BUFFER-counter (record counter)

GO START/CONT process (stops on EOF,EOM or ERROR)
GO N Process N-files (skip bad records)

GO0 N,M Process N-files or M-recs - 1st to occur

GOEN START/CONT process - unloads tape and ends
GOEN N START/CONT process - unloads tape and ends
GOEN N,M Process N-files or M-recs - 1st to occur

HUP Updates his-file but does not terminate
CTRL/C Interrupts tape processing and waits for next typed CMD
END END gracefully - update his-file & END

KILL Abort program - no update!!

Commands Related Command File Operation iiiiiiinninnnnnn.

CMDF fil Assign fil.cmd as cmd-file (not read yet)

CCMD Continue reading instructions from fil.cmd

CLCM Continue with last CMD from fil.cmd (backspaces)
CCON Continue (reading instructions from CON:)

