Event Builder Skeleton

Gordon McCann
Contributions from: Ken Hanselman, Erin Good,
Sudarsan Balakrishnan, Kevin Macon, Chris Esparza

July 2021

1 Introduction

This paper is aimed at giving a description of the functionality of the Event
Builder Skeleton code and a brief example of how to use the EventBuilder
code. Note that this code is a template. 1 will outline a general method by
which the event builder will work, but most experiments will require the user
to tweak the code to fit their individual data set. Additonally, the event builder
skeleton provides no default method by which to plot or histogram the data;
any functionality to that end would have to be provided by the user.

Some notes about compatibility: The current version has been tested on
Ubuntu 20.04, SL 7, and Mac OSX Catalina using ROOT 6. Any other combi-
nation of software is the wild west.

2 Event Building

First, some jargon: a hit refers to a single signal in a single channel of a detector
setup, while an event is a collection of coincident hits. Event building is the
concept of creating time-ordered data by grouping together coincident detector
hits into events. Thus the goal of the event builder code is to take data from
the CoMPASS DAQ and generate these ordered events for use in further physics
analysis.

CoMPASS gives raw binary data stored in a file for every channel in the
system (read: if there are a 147 channels, there are 147 files). While each of
these individual files is ordered in time, there is no information about how the
files are ordered relative to each other. The main hurdle of the event builder is
then to read in the data from all of these files simultaneously, and then perform
an insertion sort-like operation upon the data to generate a single file of ordered
and organized data.

CoMPASS raw data should be given names of the format run_# and be
tarred up into .tar.gz format and stored in the raw_binary directory of the
workspace. Event-built data is currently stored using ROOT, for both ease
of further analysis as well as efficient storage. For convenience, a shell script



called archivist is in the bin directory. The archivist can tar up files from
the CoMPASS data directory and transfer them to a event builder workspace.
To use archivist simply modify the paths to the CoMPASS directory and the
workspace of the event builder.

The event builder requires a workspace with a predefined set of directo-
ries. The workspace directory should contain the following sub-directories:
raw_binary temp_binary sorted fast analyzed histograms

3 Code Details

3.1 CompassFile and CompassRun

CompassFile and CompassRun are the two main classes which interface with
the compass binary data. The data from the tar archive is unpacked to the
temp_binary directory, and then a list of CompassFiles is opened by the Com-
passRun, where each file contains a fixed sized buffer; the size of the buffer is
currently defined in CompassFile.h using the bufsize variable. The size is
defined as number of hits to be read, where the size of a hit is determined at
runtime (the default value is 24 bytes). CoMPASS data is comprised of a 24
byte segment which contains board, channel, timestamp, and energy informa-
tion, as well as variable length segment which can contain waveform samples.
The skeleton code is designed to read the normal and waveform segments. It
determines the size of hits by peeking the first hit in the file and retrieving the
number of waveform samples (which is fixed on a board by board basis). Tt
should be noted that some CoMPASS options will break this scheme. If the
calibrated ADC option is selected, an extra word is appended in to the main
segment, which will cause a crash unless the user modifies the code to accept
this alternative format. See the CoMPASS user manual for more details if this
is something of interest.

The larger the buffer, the more efficient the program is, to a certain limit. If
the buffer is larger than the size of the largest file, there are no additional gains
to speed; if the buffer is too large, fast memory (read: RAM) will be exceeded
and slower memory will have to be used. In this way, it is typically best to use
a several megabyte size, to account for the larger files, while not exceeding most
systems memory limits. The buffer size in hits can be specified in the input file
or through the GUI.

3.2 Sorting

There is only one method defined for the skeleton for sorting into events, called
the slow method. The slow method is simply a single coincidence window which
grabs together all hits within a window and creates an event. The window is
started by the first event; that is no one specific channel is the trigger. Channels
can have their timestamps shifted by a specific value using the ShiftMap feature,
which allows the user to move hits to reduce deadtime.



The data is saved as an std::vector of DPPChannel structs which contain
board, channel, energy, timestamp, and wavesample data.

3.3 Scalers

The event builder supports defining certain digitizer channels to be scalers (sim-
ilar to nscldaq). As is currently setup, the program counts the hits in the scaler
file and then saves that number to a TParameter in the final output file of the
event builder. Scalers must be defined in a the ScalerFile, using the format
described in the examples given.

34 GUI

The event builder has a GUI which can simplify use for overnight runs. However,
it should be noted that any changes to the code have the potential to break GUI
functionality. If you want to make changes, and want to not build the GUI,
simply modify the make file by removing the EVBEXE from the all command.
Now only the command line version (GWMEVB_CL) will be made.

3.5 ROOT Dictionary

In order to store more complicated data than simple doubles or ints in ROOT
trees, a dictionary must be generated. The dictionary requires two header files,
one of which is called DataStructs.h, which holds the actual C++ definitions,
and the other of which is LinkDef _evb.h, which holds the precompiler instruc-
tions for ROOT. When the program is built using the normal make commands,
the dictionary is automatically generated and compiled. The ROOT dictionary
must then be loaded into each subsequent analysis that uses the data file from
the event builder. For ease of use, a dynamic library of the dictionary is also
automatically generated. To use the dynamic library in a ROOT macro, sim-
ply add the line R__LOAD_LIBRARY (<path_to_evb>/1ib/1ibEVBDict.so) after
the include statements. For use in any compiled C++ simply link it as a normal
library.

4 Building and Running

To build the code use the following command from the event builder directory:
make

To run the event builder gui then use the command:
./bin/GWMEVB

To run the command line version use:

./bin/GWMEVB_CL <operation> <your_input_file.txt>



If the code needs rebuilt use:
make clean
If you want it completely wiped use:

make clean_header && make clean

5 Example data

For testing purposes, example data is given (as well as an example workspace) in
the example directory. The data is from a SABRE-SPS run on 2C(3He, o)1 C
at 20 degrees with 24 MeV beam energy and 9511.0 G B-field. You can use this
data to perform some basic tests; there are no expected decay products from
11 at these settings, so there should be no real SABRE coincidences. Channel
and shift maps are included in the etc directory for this data
(ChannelMap_March2020_newFormat_092020.txt,
ShiftMap_April2020_newFormat_10102020.txt)

6 Conclusion

The skeleton was made to give a starting point for new experiments that use
CAEN digitizers with the CoOMPASS software, but require more detailed event
building than what is given by CoMPASS. In principle, the skeleton is functional
for any setup using CAEN digitizers with no additional work, however it will
not give you an easy way to quickly evaluate the quality of data without extra
modification on top of the skeleton. For an example of what a more fleshed-out
version can look like, see the SPS_SABRE_EventBuilder on the SESPS github,
which was the parent of this skeleton.

7 Common Problems and Questions

e What do I do when the event builder crashes?

When the event builder crashes there are three things to look at; the
first is the ROOT error report in the terminal, the second is the program
report in the terminal, and the last is the temp_binary directory. The
first will tell you whether or not the event builder crashed due to the
ROOT gui environment. Typically you have to scroll through a bunch of
error code and then you’ll see a line reporting Bad Window. This is not
the fault of the event builder code, but rather the ROOT packages. If
this is not the case, then keep scrolling to see where in the pipeline the
program crashed. Most cases of bad behavior have some sort of report to
the terminal. Finally, when the evb crashes, it typically does not finish
cleaning up (deleting) the files in \temp_binary. Make sure you manually
delete them all before re-running the event builder.



e The event builder is taking a really long time, how can I speed
it up?
Event building large amounts of data is a time consuming process, but
there are some precautions that can be taken. Shorter runs, while more
work for shifters, can be built more quickly, as the event builder scales
exponentially with data size. As it is currently constructed, the event
builder only constructs one type of event and scalers. If you have data
that should not be coincident with other parts of the experiment, this
will slow down the building process, as it doesn’t follow the same rules as
other pieces. A good example of this is a monitor detector in the scattering
chamber. To overcome this, make that channel a scaler, or don’t include
it in the archive, and analyze it separately.

e The event builder crashes with a warning of too much memory
used, what do I do? You will need to reduce the size of your buffer.
Remember that the buffer is applied to each file, and that it is in units
of hits. To figure out how much memory is used, multiply the buffer size
by the size of a hit, and then multiply by the number of files. You should
stay below the amount of memory that is available on your machine.

e I made a change to the code and now it won’t compile/run, but
everything seems correct. What do I do?
First, try a make clean and make cycle. Changes, especially to header
files, can cause some disagreements between modules in the code. If this
fails, take another look at your changes and make sure they’re compatible
with existing code.



