1
0
Fork 0
mirror of https://github.com/gwm17/PunchTable.git synced 2025-03-14 07:28:51 -04:00
PunchTable/src/GenerateTable.cpp

184 lines
7.0 KiB
C++

#include "GenerateTable.h"
#include "MassLookup.h"
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cmath>
#include "catima/gwm_integrators.h"
namespace PunchTable {
void GenerateTable(const TableParameters& params)
{
static double s_deg2rad = M_PI/180.0; //deg -> radians
static double s_energyPrecision = 0.001; // keV precision
static double s_ug2g = 1.0e-6; //ug -> g
MassLookup& masses = MassLookup::GetInstance();
catima::Projectile projectile(masses.FindMassU(params.projectileZ, params.projectileA), params.projectileZ, 0.0, 0.0);
std::vector<catima::Material> materials;
if(params.targetZ.size() != params.targetA.size() ||
params.targetZ.size() != params.targetS.size() ||
params.targetZ.size() != params.targetThickness.size())
{
std::cerr<<"ERR -- Invalid target parameters passed to GenerateTable. Mismatching target arrays."<<std::endl;
return;
}
for(size_t i=0; i<params.targetZ.size(); i++)
{
auto& tZ = params.targetZ[i];
auto& tA = params.targetA[i];
auto& tS = params.targetS[i];
materials.emplace_back();
for(size_t j=0; j<tZ.size(); j++)
{
materials[i].add_element(masses.FindMassU(tZ[j], tA[j]), tZ[j], tS[j]);
}
}
size_t depLayer = params.targetZ.size()-1;
size_t thetaBins = (params.maxTheta - params.minTheta)/params.stepTheta;
size_t energyBins = (params.maxKE - params.minKE)/params.stepKE;
std::ofstream output(params.filename);
if(!output.is_open())
{
std::cerr<<"ERR -- Unable to open output file "<<params.filename<<" at GenerateTable"<<std::endl;
return;
}
output<<std::setprecision(5);
output<<"Materials: "<<std::endl;;
for(size_t i=0; i<depLayer; i++)
{
output<<"\tGoing through: ";
for(size_t j=0; j<params.targetZ[i].size(); j++)
output<<masses.FindSymbol(params.targetZ[i][j], params.targetA[i][j])<<params.targetS[i][j];
output<<" ("<<params.targetThickness[i]<<" ug/cm2)"<<std::endl;
}
output<<"\tDeposting into: ";
for(size_t i=0; i<params.targetZ[depLayer].size(); i++)
output<<masses.FindSymbol(params.targetZ[depLayer][i], params.targetA[depLayer][i])<<params.targetS[depLayer][i];
output<<" ("<<params.targetThickness[depLayer]<<" ug/cm2)"<<std::endl;
output<<"---------------------------------"<<std::endl;
output<<"IncidentAngleRange(deg): "<<params.minTheta<<" to "<<params.maxTheta<<" stepSize: "<<params.stepTheta<<std::endl;
output<<"---------------------------------"<<std::endl;
output<<std::setw(16)<<"Energy Deposited"<<"|"<<std::setw(16)<<"Intial Energy"<<std::endl;
output<<"---------------------------------"<<std::endl;
std::vector<double> energyInData;
std::vector<double> energyDepositedData;
double theta, ke;
double edep;
double totalDep;
bool stopped;
size_t totalBins = thetaBins*energyBins;
double flush_percent=0.01;
size_t count=0, flush_val = flush_percent*totalBins, flush_count=0;
for(size_t i=0; i < thetaBins; i++)
{
theta = (params.minTheta + i*params.stepTheta)*s_deg2rad;
energyInData.clear();
energyDepositedData.clear();
for(size_t j=0; j<energyBins; j++)
{
count++;
if(count == flush_val)
{
count=0;
flush_count++;
std::cout<<"\rPercent of data generated: "<<flush_count*flush_percent*100.0<<"%"<<std::flush;
}
ke = params.maxKE - j*params.stepKE;
projectile.T = ke/projectile.A;
totalDep = 0.0;
stopped = false;
for(size_t k=0; k<depLayer; k++)
{
materials[k].thickness(params.targetThickness[k]*s_ug2g/std::fabs(std::cos(theta)));
totalDep += catima::integrate_energyloss(projectile, materials[k]);
if((ke - totalDep) < s_energyPrecision)
{
stopped = true;
break;
}
}
if(stopped)
continue;
materials[depLayer].thickness(params.targetThickness[depLayer]*s_ug2g/std::fabs(std::cos(theta)));
edep = catima::integrate_energyloss(projectile, materials[depLayer]);
if(std::abs(ke-edep) > s_energyPrecision)
{
energyInData.push_back(ke);
energyDepositedData.push_back(edep);
}
}
output<<"begin_theta "<<theta<<std::endl;
for(size_t j=0; j<energyDepositedData.size(); j++)
{
output<<std::setw(16)<<energyDepositedData[j]<<" "<<std::setw(16)<<energyInData[j]<<std::endl;
}
output<<"end_theta"<<std::endl;
}
output.close();
}
double GetEnergyDeposited(const TableParameters& params, double thetaIncident, double initialKE)
{
static double s_energyPrecision = 0.001; // keV precision
static double s_ug2g = 1.0e-6; //ug -> g
MassLookup& masses = MassLookup::GetInstance();
catima::Projectile projectile(masses.FindMassU(params.projectileZ, params.projectileA), params.projectileZ, 0.0, 0.0);
std::vector<catima::Material> materials;
if(params.targetZ.size() != params.targetA.size() ||
params.targetZ.size() != params.targetS.size() ||
params.targetZ.size() != params.targetThickness.size())
{
std::cerr<<"ERR -- Invalid target parameters passed to GenerateTable. Mismatching target arrays."<<std::endl;
return 0.0;
}
for(size_t i=0; i<params.targetZ.size(); i++)
{
auto& tZ = params.targetZ[i];
auto& tA = params.targetA[i];
auto& tS = params.targetS[i];
materials.emplace_back();
for(size_t j=0; j<tZ.size(); j++)
{
materials[i].add_element(masses.FindMassU(tZ[j], tA[j]), tZ[j], tS[j]);
}
}
size_t depLayer = params.targetZ.size() - 1;
projectile.T = initialKE/projectile.A;
double totalDep = 0.0;
for(size_t k=0; k<depLayer; k++)
{
materials[k].thickness(params.targetThickness[k]*s_ug2g/std::fabs(std::cos(thetaIncident)));
totalDep += catima::integrate_energyloss(projectile, materials[k]);
if((initialKE - totalDep) < s_energyPrecision)
{
return 0.0;
}
}
materials[depLayer].thickness(params.targetThickness[depLayer]*s_ug2g/std::fabs(std::cos(thetaIncident)));
return catima::integrate_energyloss(projectile, materials[depLayer]);
}
}