
SESPS-SABRE Event Builder

Gordon McCann
Contributions from: Ken Hanselman, Erin Good,

Sudarsan Balakrishnan, Kevin Macon, Chris Esparza

July 2021

1 Introduction

This paper is aimed at giving a description of the functionality of the SESPS-
SABRE Event Builder and a brief example of how to use the EventBuilder code.
Note that this code is a template. I will outline a general method by which the
event builder will work, but most experiments will require the user to tweak the
code to fit their individual data set. Additionally I will try to give pointers on
how the user can modify the code to better fit other use cases. Hopefully this
will allow everyone to work on SPS-SABRE data from the same basic template!

Some notes about compatibility: The current version has been tested on
Ubuntu 20.04, SL 7, and Mac OSX Catalina using ROOT 6. Any other combi-
nation of software is the wild west.

2 Event Building

First, some jargon: a hit refers to a single signal in a single channel of a detector
setup, while an event is a collection of coincident hits. Event building is the
concept of creating time-ordered data by grouping together coincident detector
hits into events. Thus the goal of the event builder code is to take data from
the CoMPASS DAQ and generate these ordered events for use in further physics
analysis.

CoMPASS gives raw binary data stored in a file for every channel in the
system (read: if there are a 147 channels, there are 147 files). While each of
these individual files is ordered in time, there is no information about how the
files are ordered relative to each other. The main hurdle of the event builder is
then to read in the data from all of these files simultaneously, and then perform
an insertion sort-like operation upon the data to generate a single file of ordered
and organized data.

The event builder as it currently exists is not strictly an event builder. It
has a final analysis stage (ConvertSlowA or ConvertFastA) which generates a
large amount of physics data. This can then be fed into the plotting tool to
generate a large number of diagnostic plots. The reason that this end of the

1



pipeline exists is primarily for analysis while actively running an experiment. It
is recommended that the user build a separate analysis code for the data after
the event building is completed.

CoMPASS raw data should be given names of the format run_# and be
tarred up into .tar.gz format and stored in the raw_binary directory of the
workspace. Event-built data is currently stored using ROOT, for both ease
of further analysis as well as efficient storage. For convenience, a shell script
called archivist is in the bin directory. The archivist can tar up files from
the CoMPASS data directory and transfer them to a event builder workspace.
To use archivist simply modify the paths to the CoMPASS directory and the
workspace of the event builder.

The event builder requires a workspace with a predefined set of directo-
ries. The workspace directory should contain the following sub-directories:
raw_binary temp_binary sorted fast analyzed histograms

3 Code Details

3.1 CompassFile and CompassRun

CompassFile and CompassRun are the two main classes which interface with
the compass binary data. The data from the tar archive is unpacked to the
temp_binary directory, and then a list of CompassFiles is opened by the Com-
passRun, where each file contains a fixed sized buffer; the size of the buffer is
currently defined in CompassFile.h using the bufsize variable. The size is
defined as number of hits to be read, where a hit in the SPS-SABRE setup is 24
bytes long. The larger the buffer, the more efficient the program is, to a certain
limit. If the buffer is larger than the size of the largest file, there are no addi-
tional gains to speed; if the buffer is too large, fast memory (read: RAM) will
be exceeded and slower memory will have to be used. In this way, it is typically
best to use a several megabyte size, to account for the larger files, while not
exceeding most systems memory limits. The default value is bufsize=200000,
which corresponds to 4.8 MB per file. Methods exist for allowing for a user
determined bufsize at runtime, but they are currently not implemented in the
SPS-SABRE method, as this is not frequently needed to change.

3.2 Sorting

There are two sorting methods: Slow and Fast. The slow method is simply a
single coincidence window which grabs together all hits within a window and
creates an event. The window is started by the first event; that is no one specific
channel is the trigger. Channels can have their timestamps shifted by a specific
value using the ShiftMap feature, which allows the user to move hits to reduce
deadtime. Typically, SPS-SABRE requires a shift of the scintillator and the
SABRE channels to match with the anode time. This reduces deadtime, and
leads to a more efficient pipeline.

2



Raw channel data is associated with specific detector variables using two
stages. The first is the channel map, which converts the global channel number
(boardNumber*16 + channel) with a key to a variable map held by the SlowSort
class. This means that to add a new type of detector, the ChannelMap class and
the SlowSort class would need modification (code contains comments on how
to modify). This is somewhat cumbersome, however it is quite efficient from a
optimization perspective.

After slow sorting, the code can optionally run the fast sorting. Fast sorting
implements a second layer of coincidence requirements between specific detector
channels to clean up background. There are two default fast sorting windows,
one for the ion chamber and one for SABRE. The ion chamber requires that
the scintillator and anode be within a certain time window, while the SABRE
requires that any sabre channel and the scintillator be within a certain window.

Finally, the sorted data can be analyzed by the SFPAnalyzer class to gener-
ate some basic physics data. Note that analyzing will typically bloat the size of
the file due to the large number of parameters that are generated. The analyzing
step is required to use the plotter tool.

3.3 Plotting

Plotting is done using the SFPPlotter class and the CutHandler class. The
plotter generates an un-cut and a cut set of histograms. The SFPPlotter is
where users will most likely make the most changes, as the desired plots can
change from experiement to experiment. Plots can be added using the MyFill

function, which wraps the creation, storage, and filling of ROOT histograms.
Simply add a MyFill where ever you would like to make a histogram. Cuts are
given using the CutList file format. Cuts are ROOT TCutG objects stored in
ROOT files; these TCutG should have the default name (CUTG). The CutList
can handle any number of cuts, where the cut should have a name, file, and
x and y variables specified in the list. X and Y variable names need to be
defined in the CutHandler class in the InitVariableMap function. By default
the variables x1, x2, xavg, scintLeft, cathode, and anodeBack are all defined.

3.4 Scalers

The event builder supports defining certain digitizer channels to be scalers (sim-
ilar to nscldaq). As is currently setup, the program counts the hits in the scaler
file and then saves that number to a TParameter in the final output file of the
event builder. Scalers must be defined in a the ScalerFile, using the format
described in the examples given.

3.5 GUI

The event builder has a GUI which can simplify use for overnight runs. However,
it should be noted that any changes to the code have the potential to break GUI
functionality. If you want to make changes, and want to not build the GUI,

3



simply modify the make file by removing the EVBEXE from the all command.
Now only the command line version (GWMEVB CL) will be made.

3.6 ROOT Dictionary

In order to store more complicated data than simple doubles or ints in ROOT
trees, a dictionary must be generated. The dictionary requires two header files,
one of which is called DataStructs.h, which holds the actual C++ definitions,
and the other of which is LinkDef_sps.h, which holds the precompiler instruc-
tions for ROOT. When the program is built using the normal make commands,
the dictionary is automatically generated and compiled. The ROOT dictionary
must then be loaded into each subsequent analysis that uses the data file from
the event builder. For ease of use, a dynamic library of the dictionary is also
automatically generated. To use the dynamic library in a ROOT macro, sim-
ply add the line R__LOAD_LIBRARY(<path_to_evb>/lib/libSPSDict.so) after
the include statements. For use in any compiled C++ simply link it as a normal
library.

4 Building and Running

To build the code use the following command from the event builder directory:

make

To run the event builder gui then use the command:

./bin/GWMEVB

To run the command line version use:

./bin/GWMEVB_CL <operation> <your_input_file.txt>

If the code needs rebuilt use:

make clean

If you want it completely wiped use:

make clean_header && make clean

5 Example data

For testing purposes, example data is given (as well as an example workspace) in
the example directory. The data is from a SABRE-SPS run on 12C(3He, α)11C
at 20 degrees with 24 MeV beam energy and 9511.0 G B-field. You can use this
data to perform some basic tests; there are no expected decay products from
11C at these settings, so there should be no real SABRE coincidences. Channel
and shift maps are included in the etc directory for this data
(ChannelMap_March2020_newFormat_092020.txt,
ShiftMap_April2020_newFormat_10102020.txt)

4



6 Common Problems and Questions

• What do I do when the event builder crashes?
When the event builder crashes there are three things to look at; the
first is the ROOT error report in the terminal, the second is the program
report in the terminal, and the last is the temp_binary directory. The
first will tell you whether or not the event builder crashed due to the
ROOT gui environment. Typically you have to scroll through a bunch of
error code and then you’ll see a line reporting Bad Window. This is not
the fault of the event builder code, but rather the ROOT packages. If
this is not the case, then keep scrolling to see where in the pipeline the
program crashed. Most cases of bad behavior have some sort of report to
the terminal. Finally, when the evb crashes, it typically does not finish
cleaning up (deleting) the files in \temp_binary. Make sure you manually
delete them all before re-running the event builder.

• Why does xavg look awful?
Make sure you’ve put the values into the event builder for the kinematic
correction with the right units.

• The event builder is taking a really long time, how can I speed
it up?
Event building large amounts of data is a time consuming process, but
there are some precautions that can be taken. Shorter runs, while more
work for shifters, can be built more quickly, as the event builder scales
exponentially with data size. As it is currently constructed, the event
builder only constructs one type of event and scalers. If you have data
that should not be coincident with other parts of the experiment, this
will slow down the building process, as it doesn’t follow the same rules as
other pieces. A good example of this is a monitor detector in the scattering
chamber. To overcome this, make that channel a scaler, or don’t include
it in the archive, and analyze it separately.

• All of the histograms are empty, what do I do?
First is to make sure that there is actually data in the analyzed file. Open
this and check the basic histograms it made. If that file is empty, this
typically points to a channel map issue, so make sure that you’ve defined
all channels properly. If that doesn’t work, try tweaking the coincidence
window. If all shifts have been applied correctly, the window can typically
run as small as 1.5 µs, but wider (2.0 µs) is a bit safer when the shifts
aren’t as dialed in. If none of that works, run the builder without the
analysis, and see if those files have any data in them. This will help tell
you if there is an issue at the beginning or the end of the pipeline.

• I made a change to the code and now it won’t compile/run, but
everything seems correct. What do I do?
First, try a make clean and make cycle. Changes, especially to header

5



files, can cause some disagreements between modules in the code. If this
fails, take another look at your changes and make sure they’re compatible
with existing code.

6


