1
0
Fork 0
mirror of https://github.com/gwm17/catima.git synced 2024-11-29 21:48:51 -05:00
catima/spline.cpp

259 lines
6.8 KiB
C++
Raw Normal View History

2018-02-26 17:20:42 -05:00
/*
* This is modification of Tino Kluge tk spline
* https://github.com/ttk592/spline/
*
* the modification is in LU caclulation,
* optimized for tridiagonal matrices
*/
#include "spline.h"
namespace catima{
band_matrix::band_matrix(int dim)
{
resize(dim);
}
void band_matrix::resize(int dim)
{
assert(dim>0);
a.resize(dim);
d.resize(dim);
c.resize(dim);
}
int band_matrix::dim() const
{
return d.size();
}
// defines the new operator (), so that we can access the elements
// by A(i,j), index going from i=0,...,dim()-1
double & band_matrix::operator () (int i, int j)
{
int k=j-i; // what band is the entry
assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) );
assert(k<2 && k>-2);
if(k>0)return c[i];
else if(k==0) return d[i];
else return a[i];
}
double band_matrix::operator () (int i, int j) const
{
int k=j-i; // what band is the entry
assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) );
if(k>0)return c[i];
else if(k==0) return d[i];
else return a[i];
}
std::vector<double> band_matrix::trig_solve(const std::vector<double>& b) const
{
assert( this->dim()==(int)b.size() );
std::vector<double> x(this->dim());
std::vector<double> g(this->dim());
int j_stop;
double sum;
assert(d[0]!=0.0);
x[0] = b[0]/d[0];
double bet = d[0];
for(int j=1;j<this->dim();j++){
g[j] = c[j-1]/bet;
bet = d[j] - (a[j]*g[j]);
assert(bet != 0.0);
x[j] = (b[j]-a[j]*x[j-1])/bet;
}
for(int j=this->dim()-2;j>=0;j--){
x[j] -= g[j+1]*x[j+1];
}
return x;
}
// spline implementation
// -----------------------
void spline::set_boundary(spline::bd_type left, double left_value,
spline::bd_type right, double right_value,
bool force_linear_extrapolation)
{
assert(n==0); // set_points() must not have happened yet
m_left=left;
m_right=right;
m_left_value=left_value;
m_right_value=right_value;
m_force_linear_extrapolation=force_linear_extrapolation;
}
void spline::set_points(const double *x,
const double *y,
const size_t num
)
{
assert(num>2);
m_x=x;
m_y=y;
n=num;
// TODO: maybe sort x and y, rather than returning an error
for(int i=0; i<n-1; i++) {
assert(m_x[i]<m_x[i+1]);
}
// setting up the matrix and right hand side of the equation system
// for the parameters b[]
band_matrix A(n);
std::vector<double> rhs(n);
for(int i=1; i<n-1; i++) {
A(i,i-1)=1.0/3.0*(x[i]-x[i-1]);
A(i,i)=2.0/3.0*(x[i+1]-x[i-1]);
A(i,i+1)=1.0/3.0*(x[i+1]-x[i]);
rhs[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);
}
// boundary conditions
if(m_left == spline::bd_type::second_deriv) {
// 2*b[0] = f''
A(0,0)=2.0;
A(0,1)=0.0;
rhs[0]=m_left_value;
} else{
// c[0] = f', needs to be re-expressed in terms of b:
// (2b[0]+b[1])(x[1]-x[0]) = 3 ((y[1]-y[0])/(x[1]-x[0]) - f')
A(0,0)=2.0*(x[1]-x[0]);
A(0,1)=1.0*(x[1]-x[0]);
rhs[0]=3.0*((y[1]-y[0])/(x[1]-x[0])-m_left_value);
}
if(m_right == spline::bd_type::second_deriv) {
// 2*b[n-1] = f''
A(n-1,n-1)=2.0;
A(n-1,n-2)=0.0;
rhs[n-1]=m_right_value;
} else{
// c[n-1] = f', needs to be re-expressed in terms of b:
// (b[n-2]+2b[n-1])(x[n-1]-x[n-2])
// = 3 (f' - (y[n-1]-y[n-2])/(x[n-1]-x[n-2]))
A(n-1,n-1)=2.0*(x[n-1]-x[n-2]);
A(n-1,n-2)=1.0*(x[n-1]-x[n-2]);
rhs[n-1]=3.0*(m_right_value-(y[n-1]-y[n-2])/(x[n-1]-x[n-2]));
}
// solve the equation system to obtain the parameters b[]
//m_b=A.lu_solve(rhs);
m_b=A.trig_solve(rhs);
// calculate parameters a[] and c[] based on b[]
m_a.resize(n);
m_c.resize(n);
for(int i=0; i<n-1; i++) {
m_a[i]=1.0/3.0*(m_b[i+1]-m_b[i])/(x[i+1]-x[i]);
m_c[i]=(y[i+1]-y[i])/(x[i+1]-x[i])
- 1.0/3.0*(2.0*m_b[i]+m_b[i+1])*(x[i+1]-x[i]);
}
// for left extrapolation coefficients
m_b0 = (m_force_linear_extrapolation==false) ? m_b[0] : 0.0;
m_c0 = m_c[0];
// for the right extrapolation coefficients
// f_{n-1}(x) = b*(x-x_{n-1})^2 + c*(x-x_{n-1}) + y_{n-1}
double h=x[n-1]-x[n-2];
// m_b[n-1] is determined by the boundary condition
m_a[n-1]=0.0;
m_c[n-1]=3.0*m_a[n-2]*h*h+2.0*m_b[n-2]*h+m_c[n-2]; // = f'_{n-2}(x_{n-1})
if(m_force_linear_extrapolation==true)
m_b[n-1]=0.0;
}
double spline::operator() (double x) const
{
assert(n>2);
// find the closest point m_x[idx] < x, idx=0 even if x<m_x[0]
auto it=std::lower_bound(m_x,m_x+n,x);
//int idx=std::max( int(it-m_x)-1, 0);
if(it!=m_x)it--;
int idx = std::distance(m_x,it);
double mx = *it;
double h=x-mx;
double interpol;
if(x<m_x[0]) {
// extrapolation to the left
interpol=(m_b0*h + m_c0)*h + m_y[0];
} else if(x>m_x[n-1]) {
// extrapolation to the right
interpol=(m_b[n-1]*h + m_c[n-1])*h + m_y[n-1];
} else {
// interpolation
interpol=((m_a[idx]*h + m_b[idx])*h + m_c[idx])*h + m_y[idx];
}
return interpol;
}
double spline::deriv(int order, double x) const
{
assert(order>0);
// find the closest point m_x[idx] < x, idx=0 even if x<m_x[0]
auto it=std::lower_bound(m_x,m_x+n,x);
//int idx=std::max( int(it-m_x)-1, 0);
if(it!=m_x)it--;
int idx = std::distance(m_x,it);
double mx = *it;
double h=x-mx;
double interpol;
if(x<m_x[0]) {
// extrapolation to the left
switch(order) {
case 1:
interpol=2.0*m_b0*h + m_c0;
break;
case 2:
interpol=2.0*m_b0*h;
break;
default:
interpol=0.0;
break;
}
} else if(x>m_x[n-1]) {
// extrapolation to the right
switch(order) {
case 1:
interpol=2.0*m_b[n-1]*h + m_c[n-1];
break;
case 2:
interpol=2.0*m_b[n-1];
break;
default:
interpol=0.0;
break;
}
} else {
// interpolation
switch(order) {
case 1:
interpol=(3.0*m_a[idx]*h + 2.0*m_b[idx])*h + m_c[idx];
break;
case 2:
interpol=6.0*m_a[idx]*h + 2.0*m_b[idx];
break;
case 3:
interpol=6.0*m_a[idx];
break;
default:
interpol=0.0;
break;
}
}
return interpol;
}
} // namespace tk