1
0
Fork 0
mirror of https://github.com/gwm17/catima.git synced 2024-11-26 20:18:51 -05:00

Merge pull request #83 from hrosiak/theta

Theta
This commit is contained in:
Andrej Prochazka 2020-12-16 23:05:10 +01:00 committed by GitHub
commit 487dbe4bd8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 216 additions and 69 deletions

View File

@ -477,13 +477,26 @@ double energy_straggling_firsov(double z1,double energy, double z2, double m2){
return factor*beta2/fine_structure/fine_structure; return factor*beta2/fine_structure/fine_structure;
} }
double angular_scattering_variance(const Projectile &p, const Target &t){ double angular_scattering_power(const Projectile &p, const Target &t, double Es2){
if(p.T<=0)return 0.0; if(p.T<=0)return 0.0;
double e=p.T; double e=p.T;
double _p = p_from_T(e,p.A); double _p = p_from_T(e,p.A);
double beta = _p/((e+atomic_mass_unit)*p.A); double beta = _p/((e+atomic_mass_unit)*p.A);
double lr = radiation_length(t.Z,t.A); double lr = radiation_length(t.Z,t.A);
return 198.81 * pow(p.Z,2)/(lr*pow(_p*beta,2)); //constexpr double Es2 = 198.81;
//constexpr double Es2 =2*PI/fine_structure* electron_mass * electron_mass;
return Es2 * pow(p.Z,2)/(lr*pow(_p*beta,2));
}
double angular_scattering_power(const Projectile &p, const Material &mat, double Es2){
if(p.T<=0)return 0.0;
double e=p.T;
double _p = p_from_T(e,p.A);
double beta = _p/((e+atomic_mass_unit)*p.A);
double X0 = radiation_length(mat);
//constexpr double Es2 = 198.81;
//constexpr double Es2 =2*PI/fine_structure* electron_mass * electron_mass;
return Es2 * pow(p.Z,2)/(X0*pow(_p*beta,2));
} }
/// radiation lengths are taken from Particle Data Group 2014 /// radiation lengths are taken from Particle Data Group 2014
@ -524,6 +537,16 @@ double radiation_length(int z, double m){
return lr; return lr;
} }
double radiation_length(const Material &material){
double sum = 0;
for(int i=0;i<material.ncomponents();i++){
auto t = material.get_element(i);
double w = material.weight_fraction(i);
sum += w/radiation_length(t.Z,t.A);
}
return 1/sum;
}
double precalculated_lindhard(const Projectile &p){ double precalculated_lindhard(const Projectile &p){
double T = p.T; double T = p.T;
@ -613,6 +636,7 @@ double z_effective(const Projectile &p,const Target &t, const Config &c){
return z_eff_Schiwietz(p.Z, beta, t.Z); return z_eff_Schiwietz(p.Z, beta, t.Z);
} }
else{ else{
assert("unknown effective charge config");
return 0.0; return 0.0;
} }
} }

View File

@ -100,8 +100,24 @@ namespace catima{
*/ */
double sezi_dedx_e(const Projectile &p, const Material &mat, const Config &c=default_config); double sezi_dedx_e(const Projectile &p, const Material &mat, const Config &c=default_config);
//constexpr double Es2_FR =2*PI/fine_structure* electron_mass * electron_mass;
constexpr double Es2_FR = 198.81;
double angular_scattering_variance(const Projectile &p, const Target &t); /**
* angular scattering power in form of da^2/dx in units rad^2/ g/cm^2
* @param p - Projectile class
* @param t - Target class
* @Es2 - energy constant squared, default is 14.1^2 = 198.81
*/
double angular_scattering_power(const Projectile &p, const Target &t, double Es2=Es2_FR);
/**
* angular scattering power in form of da^2/dx in units rad^2/ g/cm^2
* @param p - Projectile class
* @param t - Material class
* @Es2 - energy constant squared, default is 14.1^2 = 198.81
*/
double angular_scattering_power(const Projectile &p, const Material &material, double Es2=Es2_FR);
/** /**
* returns radiation length of the (M,Z) material * returns radiation length of the (M,Z) material
@ -112,7 +128,19 @@ namespace catima{
*/ */
double radiation_length(int z, double m); double radiation_length(int z, double m);
/**
* returns radiation length of the Material class
* radiation length if calculated if not specified in Material
* or return specified radiation length
* @param Material - Material class
* @return radiation length in g/cm^2
*/
double radiation_length(const Material &material);
/** returns effective Z of the projectile /** returns effective Z of the projectile
* @param p - Projectile class
* @param t - Target class
* @param c - Configuration, the z effective will be calculated according to c.z_effective value * @param c - Configuration, the z effective will be calculated according to c.z_effective value
* @return - z effective * @return - z effective
*/ */

View File

@ -58,14 +58,12 @@ double domega2dx(const Projectile &p, const Material &mat, const Config &c){
} }
double da2dx(const Projectile &p, const Material &mat, const Config &c){ double da2dx(const Projectile &p, const Material &mat, const Config &c){
double sum = 0; const double Es2 = 198.81;
return angular_scattering_power(p,mat, Es2);
}
for(int i=0;i<mat.ncomponents();i++){ double da2de(const Projectile &p, const Material &mat, const Config &c){
auto t = mat.get_element(i); return da2dx(p,mat,c)/dedx(p,mat,c);
double w = mat.weight_fraction(i);
sum += w*angular_scattering_variance(p,t);
}
return sum;
} }
@ -120,19 +118,42 @@ double domega2de(const Projectile &p, double T, const Material &t, const Config
spline_type range_straggling_spline = get_range_straggling_spline(data); spline_type range_straggling_spline = get_range_straggling_spline(data);
return range_straggling_spline.derivative(T); return range_straggling_spline.derivative(T);
} }
/*
double da2de(const Projectile &p, double T, const Material &t, const Config &c){ double da2de(const Projectile &p, double T, const Material &t, const Config &c){
auto& data = _storage.Get(p,t,c); auto& data = _storage.Get(p,t,c);
//Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num); //Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
spline_type angular_variance_spline = get_angular_variance_spline(data); spline_type angular_variance_spline = get_angular_variance_spline(data);
return angular_variance_spline.derivative(T); return angular_variance_spline.derivative(T);
} }
*/
double angular_straggling_from_E(const Projectile &p, double T, double Tout, const Material &t, const Config &c){ double angular_variance(Projectile p, const Material &t, const Config &c){
const double T = p.T;
auto& data = _storage.Get(p,t,c); auto& data = _storage.Get(p,t,c);
//Interpolator angular_straggling_spline(energy_table.values,data.angular_variance.data(),energy_table.num); spline_type range_spline = get_range_spline(data);
spline_type angular_variance_spline = get_angular_variance_spline(data); auto fx0p = [&](double x)->double{
return sqrt(angular_variance_spline(T) - angular_variance_spline(Tout)); double e =energy_out(T,x,range_spline);
//double l = x/radiation_length(t);
//double f = 0.97*(1+log(l)/20.7) + (1+log(l)/22.7);
constexpr double f = 1;
return f*da2dx(p(e), t, c);
};
double f = 1.0;
double range = range_spline(T);
double rrange = std::min(range, t.thickness());
return f*integrator.integrate(fx0p,0, rrange);
}
double angular_straggling(Projectile p, const Material &t, const Config &c){
return sqrt(angular_variance(p,t,c));
}
double angular_straggling_from_E(const Projectile &p, double T, double Tout, Material t, const Config &c){
auto& data = _storage.Get(p,t,c);
spline_type range_spline = get_range_spline(data);
double th = range_spline(T)-range_spline(Tout);
t.thickness(th);
return angular_straggling(p,t,c);
} }
double energy_straggling_from_E(const Projectile &p, double T, double Tout,const Material &t, const Config &c){ double energy_straggling_from_E(const Projectile &p, double T, double Tout,const Material &t, const Config &c){
@ -220,17 +241,28 @@ Result calculate(Projectile p, const Material &t, const Config &c){
if(T<catima::Ezero && T<catima::Ezero-catima::numeric_epsilon){return res;} if(T<catima::Ezero && T<catima::Ezero-catima::numeric_epsilon){return res;}
auto& data = _storage.Get(p,t,c); auto& data = _storage.Get(p,t,c);
bool use_angular_spline = false;
if(c.scattering == scattering_types::atima_scattering){
use_angular_spline = true;
}
//Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num); //Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
spline_type range_spline = get_range_spline(data); spline_type range_spline = get_range_spline(data);
spline_type range_straggling_spline = get_range_straggling_spline(data);
res.Ein = T; res.Ein = T;
res.range = range_spline(T); res.range = range_spline(T);
res.dEdxi = p.A/range_spline.derivative(T); res.dEdxi = p.A/range_spline.derivative(T);
res.Eout = energy_out(T,t.thickness(),range_spline); res.sigma_r = sqrt(range_straggling_spline(T));
if(t.thickness()==0){
res.dEdxo = res.dEdxi;
return res;
}
res.Eout = energy_out(T,t.thickness(),range_spline);
res.Eloss = (res.Ein - res.Eout)*p.A;
//Interpolator range_straggling_spline(energy_table.values,data.range_straggling.data(),energy_table.num);
spline_type range_straggling_spline = get_range_straggling_spline(data);
spline_type angular_variance_spline = get_angular_variance_spline(data);
if(res.Eout<Ezero){ if(res.Eout<Ezero){
res.dEdxo = 0.0; res.dEdxo = 0.0;
res.sigma_a = 0.0; res.sigma_a = 0.0;
@ -238,6 +270,7 @@ Result calculate(Projectile p, const Material &t, const Config &c){
res.sigma_E = 0.0; res.sigma_E = 0.0;
} }
else{ else{
spline_type angular_variance_spline = get_angular_variance_spline(data);
res.dEdxo = p.A/range_spline.derivative(res.Eout); res.dEdxo = p.A/range_spline.derivative(res.Eout);
#ifdef THIN_TARGET_APPROXIMATION #ifdef THIN_TARGET_APPROXIMATION
if(thin_target_limit*res.Ein<res.Eout){ if(thin_target_limit*res.Ein<res.Eout){
@ -245,49 +278,51 @@ Result calculate(Projectile p, const Material &t, const Config &c){
double s1 = range_straggling_spline.derivative(T); double s1 = range_straggling_spline.derivative(T);
double s2 = range_straggling_spline.derivative(res.Eout); double s2 = range_straggling_spline.derivative(res.Eout);
res.sigma_E = res.dEdxo*sqrt(edif*0.5*(s1+s2))/p.A; res.sigma_E = res.dEdxo*sqrt(edif*0.5*(s1+s2))/p.A;
s1 = angular_variance_spline.derivative(T); if(use_angular_spline){
s2 = angular_variance_spline.derivative(res.Eout); s1 = angular_variance_spline.derivative(T);
res.sigma_a = sqrt(0.5*(s1+s2)*edif); s2 = angular_variance_spline.derivative(res.Eout);
res.sigma_a = sqrt(0.5*(s1+s2)*edif);
}
} }
else{ else{
res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A; res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A;
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout)); if(use_angular_spline){
} res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
}
}
#else #else
res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A; res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A;
//Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num); if(use_angular_spline){
spline_type angular_variance_spline = get_angular_variance_spline(data); res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout)); }
#endif #endif
if( t.thickness()>0){ if( (!use_angular_spline) && res.range>t.thickness()){ // do not calculate angle scattering when stopped inside material
//auto tofdata = calculate_tof(p,t,c); res.sigma_a = angular_straggling(p(T),t,c);
//Interpolator tof_spline(energy_table.values, tofdata.data(), energy_table.num,interpolation_t::linear); }
//res.tof = tof_spline(res.Ein) - tof_spline(res.Eout); //Interpolator tof_spline(energy_table.values, tofdata.data(), energy_table.num,interpolation_t::linear);
res.tof = calculate_tof_from_E(p,res.Eout,t); //res.tof = tof_spline(res.Ein) - tof_spline(res.Eout);
} res.tof = calculate_tof_from_E(p,res.Eout,t);
}
res.sigma_r = sqrt(range_straggling_spline(T));
res.Eloss = (res.Ein - res.Eout)*p.A;
} //end of else for non stopped case
// position straggling in material
double rrange = std::min(res.range/t.density(), t.thickness_cm()); double rrange = std::min(res.range/t.density(), t.thickness_cm());
auto fx2p = [&](double x)->double{ auto fx2p = [&](double x)->double{
double range = range_spline(T);
double e =energy_out(T,x*t.density(),range_spline); double e =energy_out(T,x*t.density(),range_spline);
return (rrange-x)*(rrange-x)*da2dx(p(e), t, c)*t.density(); return (rrange-x)*(rrange-x)*da2dx(p(e), t, c)*t.density();
}; };
//res.sigma_x = integrator_adaptive.integrate(fx2p,0, rrange,1e-3, 1e-3,1); res.sigma_x = integrator_adaptive.integrate(fx2p,0, rrange,1e-3,1e-6);
res.sigma_x = integrator_adaptive.integrate(fx2p,0, rrange);
res.sigma_x = sqrt(res.sigma_x); res.sigma_x = sqrt(res.sigma_x);
// position vs angle covariance, needed later for final position straggling
auto fx1p = [&](double x)->double{ auto fx1p = [&](double x)->double{
double e =energy_out(T,x*t.density(),range_spline); double e =energy_out(T,x*t.density(),range_spline);
return (rrange-x)*da2dx(p(e), t, c)*t.density(); return (rrange-x)*da2dx(p(e), t, c)*t.density();
}; };
//res.cov = integrator_adaptive.integrate(fx1p,0, t.thickness_cm(), 1e-3, 1e-3,1);
res.cov = integrator.integrate(fx1p,0, rrange); res.cov = integrator.integrate(fx1p,0, rrange);
#ifdef REACTIONS #ifdef REACTIONS
res.sp = nonreaction_rate(p,t,c); res.sp = nonreaction_rate(p,t,c);
#endif #endif
@ -349,6 +384,9 @@ DataPoint calculate_DataPoint(Projectile p, const Material &t, const Config &c){
auto fomega = [&](double x)->double{ auto fomega = [&](double x)->double{
return domega2dx(p(x),t,c)/catima::power(dedx(p(x),t,c),3); return domega2dx(p(x),t,c)/catima::power(dedx(p(x),t,c),3);
}; };
auto ftheta = [&](double x)->double{
return da2de(p(x),t,c);
};
//double res=0.0; //double res=0.0;
//calculate 1st point to have i-1 element ready for loop //calculate 1st point to have i-1 element ready for loop
@ -366,8 +404,10 @@ DataPoint calculate_DataPoint(Projectile p, const Material &t, const Config &c){
for(int i=1;i<max_datapoints;i++){ for(int i=1;i<max_datapoints;i++){
double res = p.A*integrator.integrate(fdedx,energy_table(i-1),energy_table(i)); double res = p.A*integrator.integrate(fdedx,energy_table(i-1),energy_table(i));
dp.range[i] = res + dp.range[i-1]; dp.range[i] = res + dp.range[i-1];
res = da2dx(p(energy_table(i)),t)*res; //res = da2dx(p(energy_table(i)),t)*res;
dp.angular_variance[i] = res + dp.angular_variance[i-1]; //dp.angular_variance[i] = res + dp.angular_variance[i-1];
dp.angular_variance[i] = p.A*integrator.integrate(ftheta,energy_table(i-1),energy_table(i))
+ dp.angular_variance[i-1];
res = integrator.integrate(fomega,energy_table(i-1),energy_table(i)); res = integrator.integrate(fomega,energy_table(i-1),energy_table(i));
res = p.A*res; res = p.A*res;

View File

@ -113,6 +113,23 @@ namespace catima{
*/ */
double da2de(const Projectile &p, double T, const Material &t, const Config &c=default_config); double da2de(const Projectile &p, double T, const Material &t, const Config &c=default_config);
/**
* returns the planar RMS angular straggling in rad
* @param p - Projectile
* @param t - Material class
* @param c - Config class
* @return angular RMS straggling in rad
*/
double angular_straggling(Projectile p, const Material &t, const Config &c=default_config);
/**
* returns the planar RMS angular variance in rad
* @param p - Projectile
* @param t - Material class
* @param c - Config class
* @return angular RMS variance in rad
*/
double angular_variance(Projectile p, const Material &t, const Config &c=default_config);
/** /**
* calculates angular scattering in the material from difference of incoming a nd outgoing energies * calculates angular scattering in the material from difference of incoming a nd outgoing energies
* @param p - Projectile * @param p - Projectile
@ -121,7 +138,7 @@ namespace catima{
* @param mat - Material * @param mat - Material
* @return angular straggling * @return angular straggling
*/ */
double angular_straggling_from_E(const Projectile &p, double T, double Tout,const Material &t, const Config &c=default_config); double angular_straggling_from_E(const Projectile &p, double T, double Tout,Material t, const Config &c=default_config);
/** /**
* calculates Energy straggling in the material from difference of incoming a nd outgoing energies * calculates Energy straggling in the material from difference of incoming a nd outgoing energies

View File

@ -45,6 +45,14 @@ namespace catima{
srim_95 = 1, srim_95 = 1,
}; };
/**
* enum to select angular scattering
*/
enum scattering_types:unsigned char{
fermi_rossi = 0,
atima_scattering = 255,
};
/** /**
* structure to store calculation configuration * structure to store calculation configuration
*/ */
@ -57,7 +65,8 @@ namespace catima{
unsigned char corrections = 0; unsigned char corrections = 0;
unsigned char calculation = 1; unsigned char calculation = 1;
unsigned char low_energy = 0; unsigned char low_energy = low_energy_types::srim_85;
unsigned char scattering = scattering_types::atima_scattering;
}; };

View File

@ -62,7 +62,7 @@ using integrator_type = IntegratorGSL;
#else #else
using integrator_type = GaussLegendreIntegration<8>; using integrator_type = GaussLegendreIntegration<8>;
#endif #endif
using integrator_adaptive_type = GaussKronrodIntegration<15>; using integrator_adaptive_type = GaussKronrodIntegration<21>;
extern integrator_type integrator; extern integrator_type integrator;
extern integrator_adaptive_type integrator_adaptive; extern integrator_adaptive_type integrator_adaptive;

View File

@ -158,6 +158,7 @@ namespace catima{
case material::C21H24O4: return Material({{0,6,21},{0,1,24},{0,8,4}},1.18); case material::C21H24O4: return Material({{0,6,21},{0,1,24},{0,8,4}},1.18);
case material::CoRe_Alloy: return Material({{0,27,17},{0,75,23},{0,24,1}},11.5); case material::CoRe_Alloy: return Material({{0,27,17},{0,75,23},{0,24,1}},11.5);
case material::LLZO_electrolyte: return Material({{0,3,7},{0,57,3},{0,40,2},{0,8,12}},5.1); case material::LLZO_electrolyte: return Material({{0,3,7},{0,57,3},{0,40,2},{0,8,12}},5.1);
case material::Nylon: return Material({{0,6,6},{0,1,11},{0,7,1},{0,8,1}},1.14);
default:break; default:break;
} }
return Material(); return Material();

View File

@ -150,7 +150,8 @@ namespace catima{
Iodonaphthalene = 343, Iodonaphthalene = 343,
C21H24O4 = 344, C21H24O4 = 344,
CoRe_Alloy = 345, CoRe_Alloy = 345,
LLZO_electrolyte = 346 LLZO_electrolyte = 346,
Nylon = 347
}; };
Material get_compound(material m); Material get_compound(material m);

View File

@ -11,11 +11,8 @@
namespace py = pybind11; namespace py = pybind11;
using namespace catima; using namespace catima;
void catima_info(){ std::string catima_info(){
printf("CATIMA version = 1.5\n"); return "CATIMA version = 1.54\n";
printf("number of energy points = %d\n",max_datapoints);
printf("min energy point = 10^%lf MeV/u\n",logEmin);
printf("max energy point = 10^%lf MeV/u\n",logEmax);
} }
std::string material_to_string(const Material &r){ std::string material_to_string(const Material &r){
@ -240,6 +237,11 @@ PYBIND11_MODULE(pycatima,m){
.value("srim_85", low_energy_types::srim_85) .value("srim_85", low_energy_types::srim_85)
.value("srim_95", low_energy_types::srim_95); .value("srim_95", low_energy_types::srim_95);
py::enum_<scattering_types>(m,"scattering_types")
.value("fermi_rossi", scattering_types::fermi_rossi)
.value("atima_scattering", scattering_types::atima_scattering);
py::enum_<material>(m,"material") py::enum_<material>(m,"material")
.value("Plastics", material::Plastics) .value("Plastics", material::Plastics)
.value("Air", material::Air) .value("Air", material::Air)
@ -262,7 +264,13 @@ PYBIND11_MODULE(pycatima,m){
.value("Suprasil", material::Suprasil) .value("Suprasil", material::Suprasil)
.value("HAVAR", material::HAVAR) .value("HAVAR", material::HAVAR)
.value("Steel", material::Steel) .value("Steel", material::Steel)
.value("CO2", material::CO2); .value("CO2", material::CO2)
.value("Methane", material::Methane)
.value("Methanol", material::Methanol)
.value("Nylon", material::Nylon)
.value("Polystyrene", material::Polystyrene)
.value("Polycarbonate", material::Polycarbonate)
.value("Teflon", material::Teflon);
py::class_<Config>(m,"Config") py::class_<Config>(m,"Config")
@ -271,12 +279,14 @@ PYBIND11_MODULE(pycatima,m){
.def_readwrite("corrections", &Config::corrections) .def_readwrite("corrections", &Config::corrections)
.def_readwrite("calculation", &Config::calculation) .def_readwrite("calculation", &Config::calculation)
.def_readwrite("low_energy", &Config::low_energy) .def_readwrite("low_energy", &Config::low_energy)
.def_readwrite("scattering", &Config::scattering)
.def("get",[](const Config &r){ .def("get",[](const Config &r){
py::dict d; py::dict d;
d["z_effective"] = r.z_effective; d["z_effective"] = r.z_effective;
d["corrections"] = r.corrections; d["corrections"] = r.corrections;
d["calculation"] = r.calculation; d["calculation"] = r.calculation;
d["low_energy"] = r.low_energy; d["low_energy"] = r.low_energy;
d["scattering"] = r.scattering;
return d; return d;
}) })
.def("__str__",[](const Config &r){ .def("__str__",[](const Config &r){
@ -285,9 +295,12 @@ PYBIND11_MODULE(pycatima,m){
s += ", corrections = "+std::to_string(r.corrections); s += ", corrections = "+std::to_string(r.corrections);
s += ", calculation = "+std::to_string(r.calculation); s += ", calculation = "+std::to_string(r.calculation);
s += ", low_energy = "+std::to_string(r.low_energy); s += ", low_energy = "+std::to_string(r.low_energy);
s += ", scattering = "+std::to_string(r.scattering);
return s; return s;
}); });
m.def("angular_scattering_power",py::overload_cast<const Projectile&, const Material&, double>(&angular_scattering_power),"angular scattering power in rad^2/g/cm^2",py::arg("projectile"),py::arg("material"),py::arg("Es2")=Es2_FR);
m.def("radiation_length",py::overload_cast<const Material&>(radiation_length));
m.def("srim_dedx_e",&srim_dedx_e); m.def("srim_dedx_e",&srim_dedx_e);
m.def("sezi_dedx_e",&sezi_dedx_e, "sezi_dedx_e", py::arg("projectile"), py::arg("material"), py::arg("config")=default_config); m.def("sezi_dedx_e",&sezi_dedx_e, "sezi_dedx_e", py::arg("projectile"), py::arg("material"), py::arg("config")=default_config);
m.def("calculate",py::overload_cast<Projectile, const Material&, const Config&>(&calculate),"calculate",py::arg("projectile"), py::arg("material"), py::arg("config")=default_config); m.def("calculate",py::overload_cast<Projectile, const Material&, const Config&>(&calculate),"calculate",py::arg("projectile"), py::arg("material"), py::arg("config")=default_config);

View File

@ -73,6 +73,7 @@ namespace catima{
double th=0; double th=0;
double molar_mass=0; double molar_mass=0;
double i_potential=0; double i_potential=0;
double _X0=0;
std::vector<Target>atoms; std::vector<Target>atoms;
public: public:

View File

@ -185,9 +185,21 @@ using namespace std;
CHECK( fabs(dif) < 0.01); CHECK( fabs(dif) < 0.01);
} }
TEST_CASE("angular scattering"){ TEST_CASE("angular scattering"){
catima::Config conf;
catima::Projectile p{1,1,1,158.6}; catima::Projectile p{1,1,1,158.6};
catima::Material cu = catima::get_material(29); catima::Material cu = catima::get_material(29);
catima::Material water = catima::get_material(catima::material::Water);
p.T = 158.6;
for(double th = 0.01;th<3;th+=0.02){
cu.thickness(th);
conf.scattering = catima::scattering_types::fermi_rossi;
auto r1 = catima::calculate(p,cu,conf);
conf.scattering = catima::scattering_types::atima_scattering;
auto r2= catima::calculate(p,cu, conf);
CHECK( r2.sigma_a == approx(r1.sigma_a).R(1e-3));
}
cu.thickness_cm(0.02963); cu.thickness_cm(0.02963);
auto res = catima::calculate(p,cu); auto res = catima::calculate(p,cu);
@ -259,7 +271,7 @@ using namespace std;
water.thickness_cm(29.4/n); water.thickness_cm(29.4/n);
for(int i=0;i<n;i++)lll.add(water); for(int i=0;i<n;i++)lll.add(water);
res2 = catima::calculate(p(215),lll); res2 = catima::calculate(p(215),lll);
CHECK(res2.total_result.sigma_x == approx(res29.sigma_x).R(0.01)); CHECK(res2.total_result.sigma_x == approx(res29.sigma_x).R(0.025));
} }
@ -334,7 +346,7 @@ using namespace std;
CHECK(res1.tof == res2.tof); CHECK(res1.tof == res2.tof);
auto ra = catima::angular_straggling_from_E(p,res1.Ein,res1.Eout,graphite); auto ra = catima::angular_straggling_from_E(p,res1.Ein,res1.Eout,graphite);
CHECK(res1.sigma_a == ra); CHECK(res1.sigma_a == approx(ra).R(1e-3));
auto re = catima::energy_straggling_from_E(p,res1.Ein,res1.Eout,graphite); auto re = catima::energy_straggling_from_E(p,res1.Ein,res1.Eout,graphite);
CHECK(res1.sigma_E == re); CHECK(res1.sigma_E == re);
@ -404,6 +416,7 @@ using namespace std;
auto water = catima::get_material(catima::material::Water); auto water = catima::get_material(catima::material::Water);
auto res2 = catima::calculate(p(600),water,600); auto res2 = catima::calculate(p(600),water,600);
CHECK(res2.dEdxi == approx(92.5).epsilon(2)); CHECK(res2.dEdxi == approx(92.5).epsilon(2));
CHECK(catima::radiation_length(water)==approx(36.1,0.2));
} }
TEST_CASE("z_eff"){ TEST_CASE("z_eff"){
using namespace catima; using namespace catima;