1
0
Fork 0
mirror of https://github.com/gwm17/catima.git synced 2024-11-22 18:28:51 -05:00

improved angular scattering

This commit is contained in:
hrocho 2020-12-16 22:53:44 +01:00
parent aef1c73450
commit 73d86d925d
10 changed files with 172 additions and 62 deletions

View File

@ -477,22 +477,26 @@ double energy_straggling_firsov(double z1,double energy, double z2, double m2){
return factor*beta2/fine_structure/fine_structure;
}
double angular_scattering_variance(const Projectile &p, const Target &t){
double angular_scattering_power(const Projectile &p, const Target &t, double Es2){
if(p.T<=0)return 0.0;
double e=p.T;
double _p = p_from_T(e,p.A);
double beta = _p/((e+atomic_mass_unit)*p.A);
double lr = radiation_length(t.Z,t.A);
return 198.81 * pow(p.Z,2)/(lr*pow(_p*beta,2));
//constexpr double Es2 = 198.81;
//constexpr double Es2 =2*PI/fine_structure* electron_mass * electron_mass;
return Es2 * pow(p.Z,2)/(lr*pow(_p*beta,2));
}
double angular_scattering_variance(const Projectile &p, const Material &mat){
double angular_scattering_power(const Projectile &p, const Material &mat, double Es2){
if(p.T<=0)return 0.0;
double e=p.T;
double _p = p_from_T(e,p.A);
double beta = _p/((e+atomic_mass_unit)*p.A);
double X0 = radiation_length(mat);
return 198.81 * pow(p.Z,2)/(X0*pow(_p*beta,2));
//constexpr double Es2 = 198.81;
//constexpr double Es2 =2*PI/fine_structure* electron_mass * electron_mass;
return Es2 * pow(p.Z,2)/(X0*pow(_p*beta,2));
}
/// radiation lengths are taken from Particle Data Group 2014
@ -632,6 +636,7 @@ double z_effective(const Projectile &p,const Target &t, const Config &c){
return z_eff_Schiwietz(p.Z, beta, t.Z);
}
else{
assert("unknown effective charge config");
return 0.0;
}
}

View File

@ -100,9 +100,9 @@ namespace catima{
*/
double sezi_dedx_e(const Projectile &p, const Material &mat, const Config &c=default_config);
double angular_scattering_variance(const Projectile &p, const Target &t);
double angular_scattering_variance(const Projectile &p, const Material &material);
constexpr double Es2_FR =2*PI/fine_structure* electron_mass * electron_mass;
double angular_scattering_power(const Projectile &p, const Target &t, double Es2=Es2_FR);
double angular_scattering_power(const Projectile &p, const Material &material, double Es2=Es2_FR);
/**
* returns radiation length of the (M,Z) material

View File

@ -58,7 +58,16 @@ double domega2dx(const Projectile &p, const Material &mat, const Config &c){
}
double da2dx(const Projectile &p, const Material &mat, const Config &c){
return angular_scattering_variance(p,mat);
//double Es2 = Es2_FR;
//if(c.scattering == scattering_types::atima_scattering){
// Es2 = 198.81;
//}
const double Es2 = 198.81;
return angular_scattering_power(p,mat, Es2);
}
double da2de(const Projectile &p, const Material &mat, const Config &c){
return da2dx(p,mat,c)/dedx(p,mat,c);
}
@ -113,19 +122,42 @@ double domega2de(const Projectile &p, double T, const Material &t, const Config
spline_type range_straggling_spline = get_range_straggling_spline(data);
return range_straggling_spline.derivative(T);
}
/*
double da2de(const Projectile &p, double T, const Material &t, const Config &c){
auto& data = _storage.Get(p,t,c);
//Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
spline_type angular_variance_spline = get_angular_variance_spline(data);
return angular_variance_spline.derivative(T);
}
*/
double angular_straggling_from_E(const Projectile &p, double T, double Tout, const Material &t, const Config &c){
double angular_variance(Projectile p, const Material &t, const Config &c){
const double T = p.T;
auto& data = _storage.Get(p,t,c);
//Interpolator angular_straggling_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
spline_type angular_variance_spline = get_angular_variance_spline(data);
return sqrt(angular_variance_spline(T) - angular_variance_spline(Tout));
spline_type range_spline = get_range_spline(data);
auto fx0p = [&](double x)->double{
double e =energy_out(T,x,range_spline);
//double l = x/radiation_length(t);
//double f = 0.97*(1+log(l)/20.7) + (1+log(l)/22.7);
constexpr double f = 1;
return f*da2dx(p(e), t, c);
};
double f = 1.0;
double range = range_spline(T);
double rrange = std::min(range, t.thickness());
return f*integrator.integrate(fx0p,0, rrange);
}
double angular_straggling(Projectile p, const Material &t, const Config &c){
return sqrt(angular_variance(p,t,c));
}
double angular_straggling_from_E(const Projectile &p, double T, double Tout, Material t, const Config &c){
auto& data = _storage.Get(p,t,c);
spline_type range_spline = get_range_spline(data);
double th = range_spline(T)-range_spline(Tout);
t.thickness(th);
return angular_straggling(p,t,c);
}
double energy_straggling_from_E(const Projectile &p, double T, double Tout,const Material &t, const Config &c){
@ -213,17 +245,28 @@ Result calculate(Projectile p, const Material &t, const Config &c){
if(T<catima::Ezero && T<catima::Ezero-catima::numeric_epsilon){return res;}
auto& data = _storage.Get(p,t,c);
bool use_angular_spline = false;
if(c.scattering == scattering_types::atima_scattering){
use_angular_spline = true;
}
//Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
spline_type range_spline = get_range_spline(data);
spline_type range_straggling_spline = get_range_straggling_spline(data);
res.Ein = T;
res.range = range_spline(T);
res.dEdxi = p.A/range_spline.derivative(T);
res.Eout = energy_out(T,t.thickness(),range_spline);
res.sigma_r = sqrt(range_straggling_spline(T));
if(t.thickness()==0){
res.dEdxo = res.dEdxi;
return res;
}
res.Eout = energy_out(T,t.thickness(),range_spline);
res.Eloss = (res.Ein - res.Eout)*p.A;
//Interpolator range_straggling_spline(energy_table.values,data.range_straggling.data(),energy_table.num);
spline_type range_straggling_spline = get_range_straggling_spline(data);
spline_type angular_variance_spline = get_angular_variance_spline(data);
if(res.Eout<Ezero){
res.dEdxo = 0.0;
res.sigma_a = 0.0;
@ -231,6 +274,7 @@ Result calculate(Projectile p, const Material &t, const Config &c){
res.sigma_E = 0.0;
}
else{
spline_type angular_variance_spline = get_angular_variance_spline(data);
res.dEdxo = p.A/range_spline.derivative(res.Eout);
#ifdef THIN_TARGET_APPROXIMATION
if(thin_target_limit*res.Ein<res.Eout){
@ -238,48 +282,51 @@ Result calculate(Projectile p, const Material &t, const Config &c){
double s1 = range_straggling_spline.derivative(T);
double s2 = range_straggling_spline.derivative(res.Eout);
res.sigma_E = res.dEdxo*sqrt(edif*0.5*(s1+s2))/p.A;
s1 = angular_variance_spline.derivative(T);
s2 = angular_variance_spline.derivative(res.Eout);
res.sigma_a = sqrt(0.5*(s1+s2)*edif);
if(use_angular_spline){
s1 = angular_variance_spline.derivative(T);
s2 = angular_variance_spline.derivative(res.Eout);
res.sigma_a = sqrt(0.5*(s1+s2)*edif);
}
}
else{
res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A;
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
}
if(use_angular_spline){
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
}
}
#else
res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A;
//Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
spline_type angular_variance_spline = get_angular_variance_spline(data);
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
if(use_angular_spline){
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
}
#endif
if( t.thickness()>0){
//auto tofdata = calculate_tof(p,t,c);
//Interpolator tof_spline(energy_table.values, tofdata.data(), energy_table.num,interpolation_t::linear);
//res.tof = tof_spline(res.Ein) - tof_spline(res.Eout);
res.tof = calculate_tof_from_E(p,res.Eout,t);
}
}
res.sigma_r = sqrt(range_straggling_spline(T));
res.Eloss = (res.Ein - res.Eout)*p.A;
if( (!use_angular_spline) && res.range>t.thickness()){ // do not calculate angle scattering when stopped inside material
res.sigma_a = angular_straggling(p(T),t,c);
}
//Interpolator tof_spline(energy_table.values, tofdata.data(), energy_table.num,interpolation_t::linear);
//res.tof = tof_spline(res.Ein) - tof_spline(res.Eout);
res.tof = calculate_tof_from_E(p,res.Eout,t);
} //end of else for non stopped case
// position straggling in material
double rrange = std::min(res.range/t.density(), t.thickness_cm());
auto fx2p = [&](double x)->double{
double e =energy_out(T,x*t.density(),range_spline);
return (rrange-x)*(rrange-x)*da2dx(p(e), t, c)*t.density();
};
//res.sigma_x = integrator_adaptive.integrate(fx2p,0, rrange,1e-3, 1e-3,1);
res.sigma_x = integrator_adaptive.integrate(fx2p,0, rrange);
res.sigma_x = integrator_adaptive.integrate(fx2p,0, rrange,1e-3,1e-6);
res.sigma_x = sqrt(res.sigma_x);
// position vs angle covariance, needed later for final position straggling
auto fx1p = [&](double x)->double{
double e =energy_out(T,x*t.density(),range_spline);
return (rrange-x)*da2dx(p(e), t, c)*t.density();
};
//res.cov = integrator_adaptive.integrate(fx1p,0, t.thickness_cm(), 1e-3, 1e-3,1);
res.cov = integrator.integrate(fx1p,0, rrange);
#ifdef REACTIONS
res.sp = nonreaction_rate(p,t,c);
#endif
@ -341,6 +388,9 @@ DataPoint calculate_DataPoint(Projectile p, const Material &t, const Config &c){
auto fomega = [&](double x)->double{
return domega2dx(p(x),t,c)/catima::power(dedx(p(x),t,c),3);
};
auto ftheta = [&](double x)->double{
return da2de(p(x),t,c);
};
//double res=0.0;
//calculate 1st point to have i-1 element ready for loop
@ -358,8 +408,10 @@ DataPoint calculate_DataPoint(Projectile p, const Material &t, const Config &c){
for(int i=1;i<max_datapoints;i++){
double res = p.A*integrator.integrate(fdedx,energy_table(i-1),energy_table(i));
dp.range[i] = res + dp.range[i-1];
res = da2dx(p(energy_table(i)),t)*res;
dp.angular_variance[i] = res + dp.angular_variance[i-1];
//res = da2dx(p(energy_table(i)),t)*res;
//dp.angular_variance[i] = res + dp.angular_variance[i-1];
dp.angular_variance[i] = p.A*integrator.integrate(ftheta,energy_table(i-1),energy_table(i))
+ dp.angular_variance[i-1];
res = integrator.integrate(fomega,energy_table(i-1),energy_table(i));
res = p.A*res;

View File

@ -113,6 +113,23 @@ namespace catima{
*/
double da2de(const Projectile &p, double T, const Material &t, const Config &c=default_config);
/**
* returns the planar RMS angular straggling in rad
* @param p - Projectile
* @param t - Material class
* @param c - Config class
* @return angular RMS straggling in rad
*/
double angular_straggling(Projectile p, const Material &t, const Config &c=default_config);
/**
* returns the planar RMS angular variance in rad
* @param p - Projectile
* @param t - Material class
* @param c - Config class
* @return angular RMS variance in rad
*/
double angular_variance(Projectile p, const Material &t, const Config &c=default_config);
/**
* calculates angular scattering in the material from difference of incoming a nd outgoing energies
* @param p - Projectile
@ -121,7 +138,7 @@ namespace catima{
* @param mat - Material
* @return angular straggling
*/
double angular_straggling_from_E(const Projectile &p, double T, double Tout,const Material &t, const Config &c=default_config);
double angular_straggling_from_E(const Projectile &p, double T, double Tout,Material t, const Config &c=default_config);
/**
* calculates Energy straggling in the material from difference of incoming a nd outgoing energies

View File

@ -45,6 +45,14 @@ namespace catima{
srim_95 = 1,
};
/**
* enum to select angular scattering
*/
enum scattering_types:unsigned char{
fermi_rossi = 0,
atima_scattering = 255,
};
/**
* structure to store calculation configuration
*/
@ -57,7 +65,8 @@ namespace catima{
unsigned char corrections = 0;
unsigned char calculation = 1;
unsigned char low_energy = 0;
unsigned char low_energy = low_energy_types::srim_85;
unsigned char scattering = scattering_types::atima_scattering;
};

View File

@ -62,7 +62,7 @@ using integrator_type = IntegratorGSL;
#else
using integrator_type = GaussLegendreIntegration<8>;
#endif
using integrator_adaptive_type = GaussKronrodIntegration<15>;
using integrator_adaptive_type = GaussKronrodIntegration<21>;
extern integrator_type integrator;
extern integrator_adaptive_type integrator_adaptive;

View File

@ -158,6 +158,7 @@ namespace catima{
case material::C21H24O4: return Material({{0,6,21},{0,1,24},{0,8,4}},1.18);
case material::CoRe_Alloy: return Material({{0,27,17},{0,75,23},{0,24,1}},11.5);
case material::LLZO_electrolyte: return Material({{0,3,7},{0,57,3},{0,40,2},{0,8,12}},5.1);
case material::Nylon: return Material({{0,6,6},{0,1,11},{0,7,1},{0,8,1}},1.14);
default:break;
}
return Material();

View File

@ -150,7 +150,8 @@ namespace catima{
Iodonaphthalene = 343,
C21H24O4 = 344,
CoRe_Alloy = 345,
LLZO_electrolyte = 346
LLZO_electrolyte = 346,
Nylon = 347
};
Material get_compound(material m);

View File

@ -11,11 +11,8 @@
namespace py = pybind11;
using namespace catima;
void catima_info(){
printf("CATIMA version = 1.5\n");
printf("number of energy points = %d\n",max_datapoints);
printf("min energy point = 10^%lf MeV/u\n",logEmin);
printf("max energy point = 10^%lf MeV/u\n",logEmax);
std::string catima_info(){
return "CATIMA version = 1.54\n";
}
std::string material_to_string(const Material &r){
@ -240,6 +237,11 @@ PYBIND11_MODULE(pycatima,m){
.value("srim_85", low_energy_types::srim_85)
.value("srim_95", low_energy_types::srim_95);
py::enum_<scattering_types>(m,"scattering_types")
.value("fermi_rossi", scattering_types::fermi_rossi)
.value("atima_scattering", scattering_types::atima_scattering);
py::enum_<material>(m,"material")
.value("Plastics", material::Plastics)
.value("Air", material::Air)
@ -262,7 +264,13 @@ PYBIND11_MODULE(pycatima,m){
.value("Suprasil", material::Suprasil)
.value("HAVAR", material::HAVAR)
.value("Steel", material::Steel)
.value("CO2", material::CO2);
.value("CO2", material::CO2)
.value("Methane", material::Methane)
.value("Methanol", material::Methanol)
.value("Nylon", material::Nylon)
.value("Polystyrene", material::Polystyrene)
.value("Polycarbonate", material::Polycarbonate)
.value("Teflon", material::Teflon);
py::class_<Config>(m,"Config")
@ -271,12 +279,14 @@ PYBIND11_MODULE(pycatima,m){
.def_readwrite("corrections", &Config::corrections)
.def_readwrite("calculation", &Config::calculation)
.def_readwrite("low_energy", &Config::low_energy)
.def_readwrite("scattering", &Config::scattering)
.def("get",[](const Config &r){
py::dict d;
d["z_effective"] = r.z_effective;
d["corrections"] = r.corrections;
d["calculation"] = r.calculation;
d["low_energy"] = r.low_energy;
d["scattering"] = r.scattering;
return d;
})
.def("__str__",[](const Config &r){
@ -285,9 +295,12 @@ PYBIND11_MODULE(pycatima,m){
s += ", corrections = "+std::to_string(r.corrections);
s += ", calculation = "+std::to_string(r.calculation);
s += ", low_energy = "+std::to_string(r.low_energy);
s += ", scattering = "+std::to_string(r.scattering);
return s;
});
m.def("angular_scattering_power",py::overload_cast<const Projectile&, const Material&, double>(&angular_scattering_power),"angular scattering power in rad^2/g/cm^2",py::arg("projectile"),py::arg("material"),py::arg("Es2")=Es2_FR);
m.def("radiation_length",py::overload_cast<const Material&>(radiation_length));
m.def("srim_dedx_e",&srim_dedx_e);
m.def("sezi_dedx_e",&sezi_dedx_e, "sezi_dedx_e", py::arg("projectile"), py::arg("material"), py::arg("config")=default_config);
m.def("calculate",py::overload_cast<Projectile, const Material&, const Config&>(&calculate),"calculate",py::arg("projectile"), py::arg("material"), py::arg("config")=default_config);

View File

@ -185,9 +185,21 @@ using namespace std;
CHECK( fabs(dif) < 0.01);
}
TEST_CASE("angular scattering"){
catima::Config conf;
catima::Projectile p{1,1,1,158.6};
catima::Material cu = catima::get_material(29);
catima::Material water = catima::get_material(catima::material::Water);
p.T = 158.6;
for(double th = 0.01;th<3;th+=0.02){
cu.thickness(th);
conf.scattering = catima::scattering_types::fermi_rossi;
auto r1 = catima::calculate(p,cu,conf);
conf.scattering = catima::scattering_types::atima_scattering;
auto r2= catima::calculate(p,cu, conf);
CHECK( r2.sigma_a == approx(r1.sigma_a).R(1e-3));
}
cu.thickness_cm(0.02963);
auto res = catima::calculate(p,cu);
@ -259,7 +271,7 @@ using namespace std;
water.thickness_cm(29.4/n);
for(int i=0;i<n;i++)lll.add(water);
res2 = catima::calculate(p(215),lll);
CHECK(res2.total_result.sigma_x == approx(res29.sigma_x).R(0.01));
CHECK(res2.total_result.sigma_x == approx(res29.sigma_x).R(0.025));
}
@ -334,7 +346,7 @@ using namespace std;
CHECK(res1.tof == res2.tof);
auto ra = catima::angular_straggling_from_E(p,res1.Ein,res1.Eout,graphite);
CHECK(res1.sigma_a == ra);
CHECK(res1.sigma_a == approx(ra).R(1e-3));
auto re = catima::energy_straggling_from_E(p,res1.Ein,res1.Eout,graphite);
CHECK(res1.sigma_E == re);