/* * Author: Andrej Prochazka * Copyright(C) 2017 * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #ifndef STORAGE #define STORAGE #include #include #include #include //#include #include "catima/build_config.h" #include "catima/constants.h" #include "catima/structures.h" #include "catima/config.h" #include "catima/spline.h" //#define VETABLE namespace catima{ /** * Class to store energy points, log spaced from logmin to logmax. */ template struct EnergyTable{ EnergyTable(double logmin, double logmax):values(),step(0.0),num(N){ step = (logmax-logmin)/(N - 1.0); for(auto i=0;i=values[N-1]-numeric_epsilon)return N-1; #ifdef ET_CALCULATED_INDEX double lxval = (std::log(v/values[0])/LN10); int i = static_cast (std::floor(lxval/step)); if(v >= values[i+1]-numeric_epsilon)i++; // this is correction for floating point precision return i; #else auto it=std::upper_bound(begin(),end(),v); return int(it-begin())-1; #endif }; std::size_t num; }; template double EnergyTable_interpolate(const T &table, double xval, double *y){ double r; if(xvaltable.values[table.size()-1])return 0.0; if(xval==table.values[table.size()-1])return y[table.size()-1]; int i = table.index(xval); double linstep = table.values[i+1] - table.values[i]; if(linstep == 0.0)return table.values[i]; double x = 1.0 - ((xval - table.values[i])/linstep); r = (x*y[i]) + ((1-x)*y[i+1]); return r; } template struct LogVArray{ LogVArray(double logmin, double logmax):logmin(logmin),logmax(logmax){ assert(logmax>logmin); step = (logmax-logmin)/(N - 1.0); } double get_min()const noexcept{return logmin;} double get_max()const noexcept{return logmax;} constexpr static int size() noexcept{return N;} constexpr double value(int i) const noexcept{return exp(LN10*(logmin + ((double)i)*step));} double operator[](int i)const noexcept{return value(i);} double operator()(int i)const noexcept{return value(i);} double step_size()const noexcept{return step;} int index(double v)const noexcept{ if(v= (value(N-1)-numeric_epsilon))return N-1; double lxval = (log(v/value(0))/LN10); int i = static_cast (std::floor(lxval/step)); if(v >= value(i+1)-numeric_epsilon)i++; // this is correction for floating point precision return i; } double step=0.0; private: double logmin; double logmax; static_assert (N>2, "N must be more than 2"); }; template struct LinearVArray{ LinearVArray(double min, double max):min(min),max(max){ if(max<=min)return; step = (max-min)/(N-1); } double get_min()const noexcept{return min;} double get_max()const noexcept{return max;} constexpr static int size() noexcept{return N;} double operator[](int i)const noexcept{return i*step + min;} int index(double v)const noexcept{ if(v=max)return N-1; assert(step>0.0); return static_cast (std::floor((v-min)/step)); } private: double step=0.0; double min; double max; static_assert (N>2, "N must be more than 2"); }; #ifdef VETABLE extern LogVArray energy_table; #else extern EnergyTable energy_table; #endif ////////////////////////////////////////////////////////////////////////////////////// #ifdef GSL_INTERPOLATION /// Interpolation class, to store interpolated values class InterpolatorGSL{ public: InterpolatorGSL(){}; InterpolatorGSL(const EnergyTable& x, const std::vector& y, interpolation_t type=cspline); ~InterpolatorGSL(); double operator()(double x)const{return eval(x);}; double eval(double x) const; double derivative(double x) const; double get_min()const{return min;}; double get_max()const{return max;}; private: double min=0; double max=0; gsl_interp_accel *acc; gsl_spline *spline; }; #endif template class InterpolatorCSpline{ public: //using xtype = EnergyTable; InterpolatorCSpline()=default; InterpolatorCSpline(const xtype &table, const std::vector &y): min(table[0]), max(table[max_datapoints-1]), ss(table,y){} double operator()(double x)const{return eval(x);} double eval(double x)const{return ss.evaluate(x);} double derivative(double x)const{return ss.deriv(x);} double get_min()const{return min;} double get_max()const{return max;} private: double min=0; double max=0; cspline_special ss; }; #ifdef GSL_INTERPOLATION using Interpolator = InterpolatorGSL; #else #ifdef VETABLE //using Interpolator = InterpolatorSplineT>; using Interpolator = InterpolatorCSpline>; #else //using Interpolator = InterpolatorSplineT>; using Interpolator = InterpolatorCSpline>; #endif #endif #ifdef STORE_SPLINES using spline_type = const Interpolator&; #else using spline_type = Interpolator; #endif // return vector with lineary spaced elements from a to b, num is number of elements /** * @brief structure to store calculated data points and optionally also splines */ class DataPoint{ public: Projectile p; Material m; Config config; std::vector range; std::vector range_straggling; std::vector angular_variance; #ifdef STORE_SPLINES Interpolator range_spline; Interpolator range_straggling_spline; Interpolator angular_variance_spline; #endif DataPoint()=default; DataPoint(const Projectile _p, const Material _m,const Config &_c=default_config):p(_p),m(_m),config(_c){} DataPoint(const DataPoint&)=delete; DataPoint(DataPoint&&)=default; DataPoint& operator=(const DataPoint&)=default; DataPoint& operator=(DataPoint&&)=default; friend bool operator==(const DataPoint &a, const DataPoint &b); }; #ifdef STORE_SPLINES const Interpolator& get_range_spline(const DataPoint &data); const Interpolator& get_range_straggling_spline(const DataPoint &data); const Interpolator& get_angular_variance_spline(const DataPoint &data); #else Interpolator get_range_spline(const DataPoint &data); Interpolator get_range_straggling_spline(const DataPoint &data); Interpolator get_angular_variance_spline(const DataPoint &data); #endif /** * @brief The Data class to store DataPoints */ class Data{ public: Data(); ~Data(); /** * @brief Add new DataPoint * @param p - Projectile * @param t - Material * @param c - Config */ void Add(const Projectile &p, const Material &t, const Config &c=default_config); int GetN() const {return storage.size();}; void Reset(){storage.clear();storage.resize(max_storage_data);index=storage.begin();}; /** * @brief Get DataPoint reference for projectile-target-config combination * @param p - Projectile * @param t - Material * @param c - Config * @return reference to DataPoint */ DataPoint& Get(const Projectile &p, const Material &t, const Config &c=default_config); DataPoint& Get(unsigned int i){return storage[i];}; int get_index() {return std::distance(storage.begin(),index);} private: std::vector storage; std::vector::iterator index; }; extern Data _storage; /** * @brief get_data - Get DataPoint from the global storage class * @param p - Projectile * @param t - Material * @param c - Config * @return const reference to DataPoint */ inline const DataPoint& get_data(const Projectile &p, const Material &t, const Config &c=default_config){ return _storage.Get(p, t, c); } bool operator==(const DataPoint &a, const DataPoint &b); } #endif