/* * Author: Andrej Prochazka * Copyright(C) 2017 * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #ifndef STORAGE #define STORAGE #include #include #include #include //#include #include "catima/build_config.h" #include "catima/constants.h" #include "catima/structures.h" #include "catima/config.h" #include "catima/spline.h" namespace catima{ /** * Class to store energy points, log spaced from logmin to logmax. */ template struct EnergyTable{ EnergyTable(double logmin, double logmax):values(),step(0.0),num(N){ step = (logmax-logmin)/(N - 1.0); for(auto i=0;i=values[N-1]-numeric_epsilon)return N-1; int i = static_cast (std::floor(lxval/step)); if(v >= values[i+1]-numeric_epsilon)i++; // this is correction for floating point precision return i; }; std::size_t num; }; extern EnergyTable energy_table; template int EnergyTable_index(const EnergyTable &table, double val){ if(valtable.values[table.num-1])return -1; double lxval = (log(val/table.values[0])/M_LN10); int i = static_cast( std::floor(lxval/table.step)); if(val >= table.values[i+1]-numeric_epsilon)i++; // this is correction for floating point precision return i; } template double EnergyTable_interpolate(const EnergyTable &table, double xval, double *y){ double r; if(xvaltable.values[table.num-1])return 0.0; if(xval==table.values[table.num-1])return y[table.num-1]; int i = EnergyTable_index(table, xval); double linstep = table.values[i+1] - table.values[i]; if(linstep == 0.0)return table.values[i]; double x = 1.0 - ((xval - table.values[i])/linstep); r = (x*y[i]) + ((1-x)*y[i+1]); return r; } ////////////////////////////////////////////////////////////////////////////////////// #ifdef GSL_INTERPOLATION /// Interpolation class, to store interpolated values class InterpolatorGSL{ public: InterpolatorGSL(){}; InterpolatorGSL(const EnergyTable& x, const std::vector& y, interpolation_t type=cspline); ~InterpolatorGSL(); double operator()(double x)const{return eval(x);}; double eval(double x) const; double derivative(double x) const; double get_min()const{return min;}; double get_max()const{return max;}; private: double min=0; double max=0; gsl_interp_accel *acc; gsl_spline *spline; }; #endif class InterpolatorCSpline{ public: using xtype = EnergyTable; InterpolatorCSpline()=default; InterpolatorCSpline(const xtype &table, const std::vector &y): min(table.values[0]), max(table.values[max_datapoints-1]), ss(table,y){} double operator()(double x)const{return eval(x);} double eval(double x)const{return ss.evaluate(x);} double derivative(double x)const{return ss.deriv(x);} double get_min()const{return min;} double get_max()const{return max;} private: double min=0; double max=0; cspline_special ss; }; #ifdef GSL_INTERPOLATION using Interpolator = InterpolatorGSL; #else using Interpolator = InterpolatorCSpline; #endif #ifdef STORE_SPLINES using spline_type = const Interpolator&; #else using spline_type = Interpolator; #endif // return vector with lineary spaced elements from a to b, num is number of elements /** * @brief structure to store calculated data points and optionally also splines */ class DataPoint{ public: Projectile p; Material m; Config config; std::vector range; std::vector range_straggling; std::vector angular_variance; #ifdef STORE_SPLINES Interpolator range_spline; Interpolator range_straggling_spline; Interpolator angular_variance_spline; #endif DataPoint()=default; DataPoint(const Projectile _p, const Material _m,const Config &_c=default_config):p(_p),m(_m),config(_c){} DataPoint(const DataPoint&)=delete; DataPoint(DataPoint&&)=default; DataPoint& operator=(const DataPoint&)=default; DataPoint& operator=(DataPoint&&)=default; friend bool operator==(const DataPoint &a, const DataPoint &b); }; #ifdef STORE_SPLINES const Interpolator& get_range_spline(const DataPoint &data); const Interpolator& get_range_straggling_spline(const DataPoint &data); const Interpolator& get_angular_variance_spline(const DataPoint &data); #else Interpolator get_range_spline(const DataPoint &data); Interpolator get_range_straggling_spline(const DataPoint &data); Interpolator get_angular_variance_spline(const DataPoint &data); #endif /** * @brief The Data class to store DataPoints */ class Data{ public: Data(); ~Data(); /** * @brief Add new DataPoint * @param p - Projectile * @param t - Material * @param c - Config */ void Add(const Projectile &p, const Material &t, const Config &c=default_config); int GetN() const {return storage.size();}; void Reset(){storage.clear();storage.resize(max_storage_data);index=storage.begin();}; /** * @brief Get DataPoint reference for projectile-target-config combination * @param p - Projectile * @param t - Material * @param c - Config * @return reference to DataPoint */ DataPoint& Get(const Projectile &p, const Material &t, const Config &c=default_config); DataPoint& Get(unsigned int i){return storage[i];}; int get_index() {return std::distance(storage.begin(),index);} private: std::vector storage; std::vector::iterator index; }; extern Data _storage; /** * @brief get_data - Get DataPoint from the global storage class * @param p - Projectile * @param t - Material * @param c - Config * @return const reference to DataPoint */ inline const DataPoint& get_data(const Projectile &p, const Material &t, const Config &c=default_config){ return _storage.Get(p, t, c); } bool operator==(const DataPoint &a, const DataPoint &b); } #endif