#include "lest.hpp" #include "testutils.h" #include #include "catima/catima.h" #include "catima/calculations.h" using namespace std; using catima::approx; const lest::test specification[] = { CASE("nuclear stopping power"){ catima::Target carbon{12.0107,6}; catima::Projectile p{4.00151,2,2,1}; double dif; p.T = 0.1/p.A; //0.1MeV dif = catima::dedx_n(p,carbon) - 14.27; EXPECT( fabs(dif)< 1); p.T = 1/p.A; //1MeV dif = catima::dedx_n(p,carbon) - 2.161; EXPECT( fabs(dif)< 0.1); p.T = 10/p.A; //10MeV dif = catima::dedx_n(p,carbon) - 0.2874; EXPECT( fabs(dif) < 0.01); p.T = 100/p.A; //100MeV dif = catima::dedx_n(p,carbon) - 0.03455; EXPECT( fabs(dif) < 0.001); }, CASE("proton stopping power from srim"){ catima::Projectile p{1,1,1,1}; catima::Target he{4.002600,2}; catima::Target carbon{12.0107,6}; EXPECT( catima::sezi_p_se(1,he) == approx(283,1)); p.T = 1; EXPECT( catima::sezi_p_se(p.T,he) == approx(catima::sezi_dedx_e(p,he)).R(1e-6)); EXPECT(catima::sezi_p_se(10,he)==approx(45.6,1)); p.T = 10; EXPECT( catima::sezi_p_se(p.T,he) == approx(catima::sezi_dedx_e(p,he)).R(1e-6)); EXPECT(catima::sezi_p_se(30,he) == approx(18.38,1)); p.T = 30; EXPECT( catima::sezi_p_se(p.T,he) == approx(catima::sezi_dedx_e(p,he)).R(1e-6)); EXPECT( catima::sezi_p_se(1,carbon) == approx(229.5,1)); p.T = 1; EXPECT( catima::sezi_p_se(p.T,carbon) == approx(catima::sezi_dedx_e(p,carbon)).R(1e-6)); EXPECT( catima::sezi_p_se(10,carbon) == approx(40.8,1)); EXPECT(catima::sezi_p_se(30,carbon) == approx(16.8,1)); p.T = 30; EXPECT( catima::sezi_p_se(p.T,carbon) == approx(catima::sezi_dedx_e(p,carbon)).R(1e-6)); }, CASE("dedx, low energy, from sezi"){ catima::Projectile p{4,2,2,1}; catima::Target carbon{12.0107,6}; // He projectile case p.T = 1; EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx(922.06).R(0.0001) ); p.T = 3; EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx(433.09).R(0.0001) ); // C projectile case p.A = 12; p.Z = 6; p.T = 1; EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx( 5792.52).R(0.0001) ); p.T = 9.9; EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx(1485.36).R(0.0001) ); }, CASE("LS check: deltaL values"){ catima::Projectile p{238,92,92,1}; p.T = 93.1494; EXPECT(catima::bethek_lindhard(p)== approx(-0.5688,0.0001)); p.T = 380.9932; EXPECT(catima::bethek_lindhard(p)== approx(0.549199,0.0001)); p.T = 995.368987; EXPECT(catima::bethek_lindhard(p)== approx(1.106649).R(0.001) ); p.T = 2640.032566; EXPECT(catima::bethek_lindhard(p)== approx(1.35314).R(0.001) ); p.T = 6091.392448; EXPECT(catima::bethek_lindhard(p)== approx(1.365643).R(0.001) ); p.T = 37277.695445; EXPECT(catima::bethek_lindhard(p)== approx(0.689662).R(0.001) ); }, CASE("LS check: straggling values"){ catima::Projectile p{238,92,92,1}; auto f = [&](){return catima::bethek_lindhard_X(p);}; p.T = 93.1494; EXPECT( f() == approx(1.56898).R(0.01) ); p.T = 380.9932; EXPECT( f() == approx(1.836008).R(0.01) ); p.T = 996.9855; EXPECT( f() == approx(1.836528).R(0.01) ); p.T = 2794.4822; EXPECT( f()== approx(1.768018).R(0.01) ); }, CASE("ultrarelativistic corrections"){ catima::Projectile p{238,92}; catima::Target t{27,13}; EXPECT(catima::pair_production(p(1e3),t) == approx(0.0,1e-3)); EXPECT(catima::bremsstrahlung(p(1e3),t) == approx(0.0,1e-3)); EXPECT(catima::pair_production(p(1e6),t) == approx(1900,300)); EXPECT(catima::bremsstrahlung(p(1e6),t) == approx(170,20)); EXPECT(catima::pair_production(p(7e6),t) == approx(21000,3000)); EXPECT(catima::bremsstrahlung(p(7e6),t) == approx(6000,500)); }, CASE("dEdx for compounds"){ catima::Projectile p{1,1,1,1000}; catima::Material water({ {1.00794,1,2}, {15.9994,8,1} }); EXPECT( catima::dedx(p,1000, water) == approx(2.23).R(5e-3)); EXPECT( catima::dedx(p,500, water) == approx(2.76).R(5e-3)); EXPECT( catima::dedx(p,9, water) == approx(51.17).R(5e-3)); }, CASE("dEdx from spline vs dEdx"){ catima::Projectile p{238,92,92,1000}; catima::Material graphite({ {12.011,6,1}, }); auto res = catima::calculate(p(1000),graphite); EXPECT(catima::dedx(p,1000, graphite) == approx(res.dEdxi).R(0.001) ); res = catima::calculate(p,graphite,500); EXPECT(catima::dedx(p,500, graphite) == approx(res.dEdxi).R(0.001) ); res = catima::calculate(p,graphite,9); EXPECT(catima::dedx(p,9, graphite) == approx(res.dEdxi).R(0.001) ); }, // CASE("dOmega2dx Ferisov test"){ //}, CASE("Eout test"){ catima::Projectile p{12,6,6,1000}; catima::Material water({ {1.00794,1,2}, {15.9994,8,1} }); catima::Material graphite; graphite.add_element(12,6,1); graphite.density(2.0); graphite.thickness(0.5); auto res = catima::calculate(p,graphite); EXPECT( res.Eout == approx(997.07,01)); }, CASE("TOF test"){ catima::Projectile p{12,6,6,1000}; catima::Material water({ {1.00794,1,2}, {15.9994,8,1} }); water.density(1.0); water.thickness(1.0); catima::Material graphite; graphite.add_element(12,6,1); graphite.density(2.0); graphite.thickness(0.5); double dif; auto res = catima::calculate(p,water); dif = res.tof - 0.038; EXPECT( fabs(dif) < 0.01); }, CASE("result from stopped material"){ catima::Projectile p{12,6,6,1000}; catima::Material water({ {1.00794,1,2}, {15.9994,8,1} }); water.density(1.0); water.thickness(1000.0); auto res = catima::calculate(p,water); EXPECT(res.Eout == 0.0); EXPECT(res.Eloss == 1000*12); EXPECT(res.sigma_E == 0.0); EXPECT(res.sigma_a == 0.0); EXPECT(res.sigma_r > 0.0); EXPECT(res.dEdxo == 0.0); EXPECT(res.tof == 0.0); catima::Layers mat; mat.add(water); auto res2= catima::calculate(p,mat); EXPECT(res2.results.size() == 1); EXPECT(res2.total_result.Eout == res2.results[0].Eout); EXPECT(res2.total_result.Eout == 0.0); EXPECT(res2.total_result.Eloss == 1000*12); EXPECT(res2.total_result.sigma_E == 0.0); EXPECT(res2.total_result.sigma_a == 0.0); EXPECT(res2.total_result.tof == 0.0); }, CASE("constant results from material"){ catima::Projectile p{12,6,6,1000}; catima::Material water({ {1.00794,1,2}, {15.9994,8,1} }); water.density(1.0); water.thickness(10.0); auto res = catima::calculate(p,water); auto res2 = catima::calculate(p,water); EXPECT(res.Eout == res2.Eout); EXPECT(res.Eloss == res2.Eloss); EXPECT(res.sigma_E == res2.sigma_E); EXPECT(res.sigma_a == res2.sigma_a); EXPECT(res.sigma_r == res2.sigma_r); EXPECT(res.dEdxo == res2.dEdxo); EXPECT(res.tof == res2.tof); }, CASE("simplified calculation"){ catima::Projectile p{12,6,6,1000}; catima::Material graphite({ {12.011,6,1}, }); graphite.density(2.0).thickness(1.0); auto res1 = catima::calculate(p,graphite); auto res2 = catima::calculate(12,6,1000,12.011,6,1.0,2.0); EXPECT(res1.Eout == res2.Eout); EXPECT(res1.Eloss == res2.Eloss); EXPECT(res1.sigma_E == res2.sigma_E); EXPECT(res1.sigma_a == res2.sigma_a); EXPECT(res1.sigma_r == res2.sigma_r); EXPECT(res1.dEdxo == res2.dEdxo); EXPECT(res1.tof == res2.tof); auto ra = catima::angular_straggling_from_E(p,res1.Ein,res1.Eout,graphite); EXPECT(res1.sigma_a == ra); auto re = catima::energy_straggling_from_E(p,res1.Ein,res1.Eout,graphite); EXPECT(res1.sigma_E == re); auto eo1 = catima::energy_out(p,1000,graphite); EXPECT(res1.Eout == eo1); auto de1 = catima::dedx_from_range(p,1000,graphite); EXPECT(res1.dEdxi == de1); }, CASE("multilayer basic"){ catima::Projectile p{12,6,6,1000}; catima::Material water({ {1.00794,1,2}, {15.9994,8,1} }); water.density(1.0); water.thickness(10.0); catima::Material graphite({ {12.011,6,1}, }); graphite.density(2.0).thickness(1.0); catima::Layers mat; mat.add(water); mat.add(graphite); auto res = catima::calculate(p(1000),mat); EXPECT(res.total_result.Eout == approx(926.3,0.1)); EXPECT(res.total_result.sigma_a == approx(0.00269).R(0.05)); EXPECT(res.total_result.tof == approx(0.402).R(0.001)); EXPECT(res.total_result.Eloss == approx(884.2,1.0)); //EXPECT(rcompare(res.total_result.sigma_E,0.7067,0.2)); EXPECT(res.results[0].Eout == approx(932.24,0.1)); EXPECT(res.results[0].sigma_a == approx(0.00258).R(0.05)); EXPECT(res.results[0].range == approx(107.163,0.1)); EXPECT(res.results[1].Eout == approx(926.3,0.1)); EXPECT(res.results[1].sigma_a == approx(0.000774).R(0.05)); EXPECT(res.results[1].range == approx(111.3,0.1)); auto res0 = catima::calculate(p(1000),water); EXPECT(res0.Eout == res.results[0].Eout); EXPECT(res0.sigma_a == res.results[0].sigma_a); EXPECT(res0.sigma_E == res.results[0].sigma_E); EXPECT(res0.sigma_r == res.results[0].sigma_r); EXPECT(res0.tof == res.results[0].tof); }, CASE("default material calculations"){ catima::Projectile p{12,6,6,350}; auto air = catima::get_material(catima::material::Air); air.thickness(0.500); auto res = catima::calculate(p(350),air); EXPECT(res.Eout == approx(345.6).epsilon(1.0)); EXPECT(res.sigma_a == approx(0.0013).epsilon(1e-4)); EXPECT(res.sigma_E == approx(0.12).epsilon(1e-3)); EXPECT(res.dEdxi == approx(103.5).epsilon(1e-1)); res = catima::calculate(p(150),air); EXPECT(res.dEdxi == approx(173.6).epsilon(1e0)); res = catima::calculate(p(1000),air); EXPECT(res.dEdxi == approx(70.69).epsilon(1e-0)); auto water = catima::get_material(catima::material::Water); auto res2 = catima::calculate(p(600),water,600); EXPECT(res2.dEdxi == approx(92.5).epsilon(2)); }, CASE("z_eff"){ using namespace catima; Projectile p_u(238,92); Target t; t.Z = 13; Config c; EXPECT(z_eff_Pierce_Blann(92,beta_from_T(5000.)) == approx(91.8).epsilon(0.2)); EXPECT(z_eff_Pierce_Blann(92,beta_from_T(5000.)) == z_effective(p_u(5000.),t,c)); EXPECT(z_eff_Winger(92,0.99,6) == approx(91.8).epsilon(0.5)); EXPECT(z_eff_Winger(92,beta_from_T(5000.),13) == approx(91.8).epsilon(0.2)); c.z_effective = z_eff_type::winger; EXPECT(z_eff_Winger(92,beta_from_T(5000.),13) == z_effective(p_u(5000.),t,c)); EXPECT(z_eff_Schiwietz(92,0.99,6) == approx(91.8).epsilon(0.5)); c.z_effective = z_eff_type::schiwietz; EXPECT(z_eff_Schiwietz(92,beta_from_T(5000.),13) == z_effective(p_u(5000.),t,c)); EXPECT(z_eff_Hubert(92,1900,13) == approx(91.88).epsilon(0.1)); c.z_effective = z_eff_type::hubert; EXPECT(z_eff_Hubert(92,1900,13) == z_effective(p_u(1900.),t,c)); #ifdef GLOBAL EXPECT(z_eff_global(92,1900,13) == approx(91.88).epsilon(0.05)); c.z_effective = z_eff_type::global; EXPECT(z_eff_global(92,1900,13) == z_effective(p_u(1900.),t,c)); EXPECT(z_eff_global(92,1000,13) == approx(91.71).epsilon(0.05)); EXPECT(z_eff_global(92,500,13) == approx(91.22).epsilon(0.1)); EXPECT(z_eff_global(92,100,6) == approx(89.61).epsilon(0.2)); //EXPECT(z_eff_global(92,100,13) == approx(89.42).epsilon(0.1)); //EXPECT(z_eff_global(92,100,29) == approx(88.37).epsilon(0.1)); //EXPECT(z_eff_global(92,50,13) == approx(85.94).epsilon(0.1)); EXPECT(z_eff_global(92,2001,13) == approx(92.0).epsilon(0.01)); EXPECT(z_eff_global(92,2000,13) == approx(92.0).epsilon(0.2)); EXPECT(z_eff_atima14(92,1900,13) == approx(91.88).epsilon(0.05)); c.z_effective = z_eff_type::atima14; EXPECT(z_eff_atima14(92,1900,13) == z_effective(p_u(1900.),t,c)); #endif }, CASE("vector_inputs"){ catima::Projectile p{12,6,6,1000}; catima::Material water({ {1.00794,1,2}, {15.9994,8,1} }); catima::Material graphite; graphite.add_element(12,6,1); graphite.density(2.0); graphite.thickness(0.5); auto res = catima::calculate(p,graphite); EXPECT( res.Eout == approx(997.07,01)); std::vector energies{100,500,1000}; auto res2 = catima::energy_out(p,energies, graphite); EXPECT(res2.size()==energies.size()); EXPECT(res2[2] == approx(997.07,01)); EXPECT(res2[0] == approx(catima::energy_out(p,energies[0],graphite),0.1)); EXPECT(res2[1] == approx(catima::energy_out(p,energies[1],graphite),0.1)); EXPECT(res2[2] == approx(catima::energy_out(p,energies[2],graphite),0.1)); auto res3 = catima::dedx_from_range(p,energies,graphite); EXPECT(res3.size()==energies.size()); EXPECT(res3[0] == approx(catima::dedx_from_range(p,energies[0],graphite),0.1)); EXPECT(res3[1] == approx(catima::dedx_from_range(p,energies[1],graphite),0.1)); EXPECT(res3[2] == approx(catima::dedx_from_range(p,energies[2],graphite),0.1)); }, CASE("constants"){ using namespace catima; EXPECT(0.1*hbar*c_light/atomic_mass_unit == approx(0.21183,0.0001)); EXPECT(16.0*dedx_constant*electron_mass*fine_structure/(atomic_mass_unit*3.0*4.0*M_PI) == approx(5.21721169334564e-7).R(1e-3)); } }; int main( int argc, char * argv[] ) { return lest::run( specification, argc, argv ); }