1
0
Fork 0
mirror of https://github.com/gwm17/catima.git synced 2024-11-22 18:28:51 -05:00
catima/bin/catima_calculator.cpp
2018-04-13 18:59:48 +02:00

268 lines
8.2 KiB
C++

#include <math.h>
#include <fstream>
#include <iostream>
#include <math.h>
#include <algorithm>
#include <vector>
#include <stdexcept>
#include "catima/catima.h"
#include "catima/nucdata.h"
#include "json.hpp"
using namespace std;
using namespace catima;
using json = nlohmann::json;
void help(){
std::cout<<"usage: catima_calculator [options]";
}
json load_json(const char *fname);
char* getCmdOption(char ** begin, char ** end, const std::string & option);
Material json_material(json &j);
int main( int argc, char * argv[] )
{
Projectile projectile;
Layers layers;
std::vector<double> energies;
Config conf;
if(argc == 1 ){
help();
return 0;
}
try{
auto j = load_json(argv[1]);
// load projectile data
if(j.count("projectile")){
if(j["projectile"].is_array()){
projectile.A = j["projectile"].at(0).get<double>();
projectile.Z = j["projectile"].at(1).get<double>();
}
}
else{
throw std::invalid_argument("projectile field is missing");
}
// load energy data
if(j.count("energy")){
auto e = j.at("energy");
if(e.is_number()){
energies.push_back(j["energy"].get<double>());
}
if(e.is_string()){
double _e = std::stod(j["energy"].get<std::string>());
energies.push_back(_e);
}
if(e.is_array()){
for(auto &el:e){
if(el.is_number())
energies.push_back(el.get<double>());
}
}
if(e.is_object()){
if(e.count("min")>0 && e.count("max")>0 && (e.count("num")>0 || e.count("step")>0)){
double emin = e["min"].get<double>();
double emax = e["max"].get<double>();
int num;
if(e.count("step")){
num = 1+(emax-emin)/e["step"].get<int>();
}
if(e.count("num")){
num = e["num"].get<int>();
}
energies = linspace_vector(emin,emax,num);
}
}
}
else{
throw std::invalid_argument("energy field is missing");
}
if(j.count("material")){
auto e = j.at("material");
if(e.is_array()){
for(auto& entry : e){
if(!entry.is_object()){
throw std::invalid_argument("material error");
}
layers.add(json_material(entry));
}
}
if(e.is_object()){
layers.add(json_material(e));
}
}
else{
throw std::invalid_argument("material field is missing");
}
if(j.count("config")>0){
auto e = j["config"];
if(e.is_string()){
std::string cstr = e.get<std::string>();
if(cstr=="atimav1.3"){
conf.z_effective = z_eff_type::pierce_blann;
cout<<"using config: Atima v1.3\n";
}
if(cstr=="atimav1.4"){
conf.z_effective = z_eff_type::atima14;
cout<<"using config: Atima v1.4\n";
}
}
}
} // end of try
catch(...){
cout<<"Could not load the config file"<<"\n";
return 0;
}
if(layers.num()==0){
cout<<"no material specified\n";
return 0;
}
if(energies.size()==0){
cout<<"no energy specified\n";
return 0;
}
cout<<"******** CAtima calculator ********\n";
cout<<"Projectile: A = "<<projectile.A<<", Z = "<<projectile.Z<<"\n";
cout<<"Materials:\n";
for(unsigned int i=0;i<layers.num();i++){
cout<<"#"<<i;
cout<<": density = "<<layers[i].density()<<" g/cm3";
cout<<", thickness = "<<layers[i].thickness()<<" g/cm2";
cout<<"\n";
}
for(double e:energies){
cout<<"-------- T = "<<e<<" MeV/u -------\n";
projectile.T = e;
auto res = calculate(projectile,layers);
for(unsigned int i=0;i<res.results.size();i++){
auto entry = res.results[i];
cout<<"material #"<<i<<":\n";
cout<<"\tEin = "<<entry.Ein<< " MeV/u\n";
cout<<"\tEout = "<<entry.Eout<<" MeV/u\n";
cout<<"\tsigma_E = "<<entry.sigma_E<<" MeV\n";
cout<<"\tEloss = "<<entry.Eloss<<" MeV\n";
cout<<"\trange = "<<entry.range<<" g/cm2\n";
cout<<"\tsigma_r = "<<entry.sigma_r<<" g/cm2\n";
cout<<"\tsigma_a = "<<entry.sigma_a<<" rad\n";
cout<<"\tdEdx(Ein) = "<<entry.dEdxi<<" MeV/g/cm2\n";
cout<<"\tTOF = "<<entry.tof<<" ns\n";
}
cout<<"total:\n";
cout<<"\tEout = "<<res.total_result.Eout<<" MeV/u\n";
cout<<"\tBeta = "<<beta_from_T(res.total_result.Eout)<<"\n";
cout<<"\tGamma = "<<gamma_from_T(res.total_result.Eout)<<"\n";
cout<<"\tP = "<<p_from_T(res.total_result.Eout, projectile.A)<<" MeV/c\n";
cout<<"\tEloss = "<<res.total_result.Eloss<<" MeV\n";
cout<<"\tsigma_E = "<<res.total_result.sigma_E<<" MeV\n";
cout<<"\tsigma_a = "<<res.total_result.sigma_a<<" rad\n";
cout<<"\tTOF = "<<res.total_result.tof<<" ns\n";
}
return 1;
}
json load_json(const char *fname){
std::vector<std::string> res;
std::ifstream jfile(fname,std::ifstream::in);
if(!jfile){
throw std::invalid_argument("Could not open config file");
}
std::string content;
jfile.seekg(0, std::ios::end);
content.resize(jfile.tellg());
jfile.seekg(0, std::ios::beg);
jfile.read(&content[0], content.size());
jfile.close();
try{
auto j = json::parse(content);
return j;
}
catch(...){
cout<<"JSON parsing error\n";
throw std::invalid_argument("Could not parse json file");
}
};
Material json_material(json &j){
if(!j.is_object()){
throw std::invalid_argument("Wrong material definition");
}
try{
double a=0;
int z=0;
double ipot=0.0;
double density=0.0;
double th=0.0;
if(j.count("density")>0){
density = j["density"].get<double>();
}
if(j.count("thickness")>0){
th = j["thickness"].get<double>();
}
if(j.count("Ipot")>0){
ipot = j["Ipot"].get<double>();
}
if(j.count("A")>0){
a = j["A"].get<double>();
}
if(j.count("Z")>0){
z = j["Z"].get<int>();
}
if(z<=0){
cout<<"Z="<<z<<"\n";
throw std::invalid_argument("Could not parse json file (material section)");
}
if(density<=0){
density = element_density(z);
if(density<=0)cout<<"Warning: material density = "<<density<<"\n";
}
if(th<=0){
cout<<"Warning: material thickness = "<<th<<"\n";
}
if(z<200 && z>0){
Material m(a,z,density,th);
if(ipot>0)m.I(ipot);
return m;
}
else{
Material m = get_material(z);
m.thickness(th);
return m;
}
}
catch(...){
cout<<"JSON parsing error: material definition\n";
throw std::invalid_argument("Could not parse json file");
}
}
char* getCmdOption(char ** begin, char ** end, const std::string & option)
{
char ** itr = std::find(begin, end, option);
if (itr != end && ++itr != end)
{
return *itr;
}
return nullptr;
}