1
0
Fork 0
mirror of https://github.com/gwm17/catima.git synced 2024-11-26 12:08:52 -05:00
catima/storage.h
2020-12-02 00:10:40 +01:00

231 lines
7.4 KiB
C++

/*
* Author: Andrej Prochazka
* Copyright(C) 2017
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef STORAGE
#define STORAGE
#include <vector>
#include <array>
#include <iterator>
#include <cmath>
//#include <unordered_set>
#include "catima/build_config.h"
#include "catima/constants.h"
#include "catima/structures.h"
#include "catima/config.h"
#include "catima/spline.h"
namespace catima{
/**
* Class to store energy points, log spaced from logmin to logmax.
*/
template<int N>
struct EnergyTable{
EnergyTable(double logmin, double logmax):values(),step(0.0),num(N){
step = (logmax-logmin)/(N - 1.0);
for(auto i=0;i<N;i++){
values[i]=exp(LN10*(logmin + ((double)i)*step));
}
}
double operator()(int i)const{return values[i];}
double operator[](int i)const{return values[i];}
static constexpr int size() {return N;};
double values[N];
double step;
double* begin(){return values;}
double* end(){return &values[num];}
int index(double v)const noexcept{
double lxval = (log(v/values[0])/LN10);
if(v<values[0] || step==0.0)return -1;
if(v>=values[N-1]-numeric_epsilon)return N-1;
int i = static_cast<int> (std::floor(lxval/step));
if(v >= values[i+1]-numeric_epsilon)i++; // this is correction for floating point precision
return i;
};
std::size_t num;
};
extern EnergyTable<max_datapoints> energy_table;
template<int N>
int EnergyTable_index(const EnergyTable<N> &table, double val){
if(val<table.values[0] || val>table.values[table.num-1])return -1;
double lxval = (log(val/table.values[0])/LN10);
int i = static_cast<int>( std::floor(lxval/table.step));
if(val >= table.values[i+1]-numeric_epsilon)i++; // this is correction for floating point precision
return i;
}
template<int N>
double EnergyTable_interpolate(const EnergyTable<N> &table, double xval, double *y){
double r;
if(xval<table.values[0] || xval>table.values[table.num-1])return 0.0;
if(xval==table.values[table.num-1])return y[table.num-1];
int i = EnergyTable_index(table, xval);
double linstep = table.values[i+1] - table.values[i];
if(linstep == 0.0)return table.values[i];
double x = 1.0 - ((xval - table.values[i])/linstep);
r = (x*y[i]) + ((1-x)*y[i+1]);
return r;
}
//////////////////////////////////////////////////////////////////////////////////////
#ifdef GSL_INTERPOLATION
/// Interpolation class, to store interpolated values
class InterpolatorGSL{
public:
InterpolatorGSL(){};
InterpolatorGSL(const EnergyTable<max_datapoints>& x, const std::vector<double>& y, interpolation_t type=cspline);
~InterpolatorGSL();
double operator()(double x)const{return eval(x);};
double eval(double x) const;
double derivative(double x) const;
double get_min()const{return min;};
double get_max()const{return max;};
private:
double min=0;
double max=0;
gsl_interp_accel *acc;
gsl_spline *spline;
};
#endif
class InterpolatorCSpline{
public:
using xtype = EnergyTable<max_datapoints>;
InterpolatorCSpline()=default;
InterpolatorCSpline(const xtype &table, const std::vector<double> &y):
min(table.values[0]), max(table.values[max_datapoints-1]), ss(table,y){}
double operator()(double x)const{return eval(x);}
double eval(double x)const{return ss.evaluate(x);}
double derivative(double x)const{return ss.deriv(x);}
double get_min()const{return min;}
double get_max()const{return max;}
private:
double min=0;
double max=0;
cspline_special<xtype> ss;
};
#ifdef GSL_INTERPOLATION
using Interpolator = InterpolatorGSL;
#else
using Interpolator = InterpolatorCSpline;
#endif
#ifdef STORE_SPLINES
using spline_type = const Interpolator&;
#else
using spline_type = Interpolator;
#endif
// return vector with lineary spaced elements from a to b, num is number of elements
/**
* @brief structure to store calculated data points and optionally also splines
*/
class DataPoint{
public:
Projectile p;
Material m;
Config config;
std::vector<double> range;
std::vector<double> range_straggling;
std::vector<double> angular_variance;
#ifdef STORE_SPLINES
Interpolator range_spline;
Interpolator range_straggling_spline;
Interpolator angular_variance_spline;
#endif
DataPoint()=default;
DataPoint(const Projectile _p, const Material _m,const Config &_c=default_config):p(_p),m(_m),config(_c){}
DataPoint(const DataPoint&)=delete;
DataPoint(DataPoint&&)=default;
DataPoint& operator=(const DataPoint&)=default;
DataPoint& operator=(DataPoint&&)=default;
friend bool operator==(const DataPoint &a, const DataPoint &b);
};
#ifdef STORE_SPLINES
const Interpolator& get_range_spline(const DataPoint &data);
const Interpolator& get_range_straggling_spline(const DataPoint &data);
const Interpolator& get_angular_variance_spline(const DataPoint &data);
#else
Interpolator get_range_spline(const DataPoint &data);
Interpolator get_range_straggling_spline(const DataPoint &data);
Interpolator get_angular_variance_spline(const DataPoint &data);
#endif
/**
* @brief The Data class to store DataPoints
*/
class Data{
public:
Data();
~Data();
/**
* @brief Add new DataPoint
* @param p - Projectile
* @param t - Material
* @param c - Config
*/
void Add(const Projectile &p, const Material &t, const Config &c=default_config);
int GetN() const {return storage.size();};
void Reset(){storage.clear();storage.resize(max_storage_data);index=storage.begin();};
/**
* @brief Get DataPoint reference for projectile-target-config combination
* @param p - Projectile
* @param t - Material
* @param c - Config
* @return reference to DataPoint
*/
DataPoint& Get(const Projectile &p, const Material &t, const Config &c=default_config);
DataPoint& Get(unsigned int i){return storage[i];};
int get_index() {return std::distance(storage.begin(),index);}
private:
std::vector<DataPoint> storage;
std::vector<DataPoint>::iterator index;
};
extern Data _storage;
/**
* @brief get_data - Get DataPoint from the global storage class
* @param p - Projectile
* @param t - Material
* @param c - Config
* @return const reference to DataPoint
*/
inline const DataPoint& get_data(const Projectile &p, const Material &t, const Config &c=default_config){
return _storage.Get(p, t, c);
}
bool operator==(const DataPoint &a, const DataPoint &b);
}
#endif