1
0
Fork 0
mirror of https://github.com/gwm17/catima.git synced 2024-11-29 21:48:51 -05:00
catima/tests/test_calculations.cpp
2019-05-13 20:51:09 +02:00

407 lines
14 KiB
C++

#include "lest.hpp"
#include "testutils.h"
#include <math.h>
#include "catima/catima.h"
#include "catima/calculations.h"
using namespace std;
using catima::approx;
const lest::test specification[] =
{
CASE("nuclear stopping power"){
catima::Target carbon{12.0107,6};
catima::Projectile p{4.00151,2,2,1};
double dif;
p.T = 0.1/p.A; //0.1MeV
dif = catima::dedx_n(p,carbon) - 14.27;
EXPECT( fabs(dif)< 1);
p.T = 1/p.A; //1MeV
dif = catima::dedx_n(p,carbon) - 2.161;
EXPECT( fabs(dif)< 0.1);
p.T = 10/p.A; //10MeV
dif = catima::dedx_n(p,carbon) - 0.2874;
EXPECT( fabs(dif) < 0.01);
p.T = 100/p.A; //100MeV
dif = catima::dedx_n(p,carbon) - 0.03455;
EXPECT( fabs(dif) < 0.001);
},
CASE("proton stopping power from srim"){
catima::Projectile p{1,1,1,1};
auto he = catima::get_material(2);
auto carbon = catima::get_material(6);
p.T = 1;
EXPECT( catima::sezi_dedx_e(p,he) == approx(283,1));
p.T = 10;
EXPECT( catima::sezi_dedx_e(p,he) == approx(45.6,1));
p.T = 30;
EXPECT( catima::sezi_dedx_e(p,he) == approx(18.38,1));
p.T = 1;
EXPECT( catima::sezi_dedx_e(p,carbon) == approx(229.5,1));
p.T = 10;
EXPECT( catima::sezi_dedx_e(p,carbon) == approx(40.8,1));
p.T = 30;
EXPECT( catima::sezi_dedx_e(p,carbon) == approx(16.8,1));
},
CASE("dedx, low energy, from sezi"){
catima::Projectile p{4,2,2,1};
auto carbon = catima::get_material(6);
// He projectile case
p.T = 1;
EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx(922.06).R(0.0001) );
p.T = 3;
EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx(433.09).R(0.0001) );
// C projectile case
p.A = 12;
p.Z = 6;
p.T = 1;
EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx( 5792.52).R(0.0001) );
p.T = 9.9;
EXPECT( catima::sezi_dedx_e(p,carbon)+catima::dedx_n(p,carbon) == approx(1485.36).R(0.0001) );
},
CASE("LS check: deltaL values"){
catima::Projectile p{238,92,92,1};
p.T = 93.1494;
EXPECT(catima::bethek_lindhard(p)== approx(-0.5688,0.0001));
p.T = 380.9932;
EXPECT(catima::bethek_lindhard(p)== approx(0.549199,0.0001));
p.T = 995.368987;
EXPECT(catima::bethek_lindhard(p)== approx(1.106649).R(0.001) );
p.T = 2640.032566;
EXPECT(catima::bethek_lindhard(p)== approx(1.35314).R(0.001) );
p.T = 6091.392448;
EXPECT(catima::bethek_lindhard(p)== approx(1.365643).R(0.001) );
p.T = 37277.695445;
EXPECT(catima::bethek_lindhard(p)== approx(0.689662).R(0.001) );
},
CASE("LS check: straggling values"){
catima::Projectile p{238,92,92,1};
auto f = [&](){return catima::bethek_lindhard_X(p);};
p.T = 93.1494;
EXPECT( f() == approx(1.56898).R(0.01) );
p.T = 380.9932;
EXPECT( f() == approx(1.836008).R(0.01) );
p.T = 996.9855;
EXPECT( f() == approx(1.836528).R(0.01) );
p.T = 2794.4822;
EXPECT( f()== approx(1.768018).R(0.01) );
for(double e:{2000,20000,200000, 9000000, 50000000})
EXPECT(catima::precalculated_lindhard_X(p(e)) >= 0.0);
},
CASE("ultrarelativistic corrections"){
catima::Projectile p{238,92};
catima::Target t{27,13};
EXPECT(catima::pair_production(p(1e3),t) == approx(0.0,1e-3));
EXPECT(catima::bremsstrahlung(p(1e3),t) == approx(0.0,1e-3));
EXPECT(catima::pair_production(p(1e6),t) == approx(1900,300));
EXPECT(catima::bremsstrahlung(p(1e6),t) == approx(170,20));
EXPECT(catima::pair_production(p(7e6),t) == approx(19000,5000));
EXPECT(catima::bremsstrahlung(p(7e6),t) == approx(6000,500));
},
CASE("dEdx for compounds"){
catima::Projectile p{1,1,1,1000};
catima::Material water({
{1.00794,1,2},
{15.9994,8,1}
});
EXPECT( catima::dedx(p(1000), water) == approx(2.23).R(5e-3));
EXPECT( catima::dedx(p(500), water) == approx(2.76).R(5e-3));
EXPECT( catima::dedx(p(9), water) == approx(51.17).R(5e-3));
},
CASE("dEdx from spline vs dEdx"){
catima::Projectile p{238,92,92,1000};
catima::Material graphite({
{12.011,6,1},
});
auto res = catima::calculate(p(1000),graphite);
EXPECT(catima::dedx(p(1000), graphite) == approx(res.dEdxi).R(0.001) );
res = catima::calculate(p,graphite,500);
EXPECT(catima::dedx(p(500), graphite) == approx(res.dEdxi).R(0.001) );
res = catima::calculate(p,graphite,9);
EXPECT(catima::dedx(p(9), graphite) == approx(res.dEdxi).R(0.001) );
},
// CASE("dOmega2dx Ferisov test"){
//},
CASE("Eout test"){
catima::Projectile p{12,6,6,1000};
catima::Material water({
{1.00794,1,2},
{15.9994,8,1}
});
catima::Material graphite;
graphite.add_element(12,6,1);
graphite.density(2.0);
graphite.thickness(0.5);
auto res = catima::calculate(p,graphite);
EXPECT( res.Eout == approx(997.07,01));
},
CASE("TOF test"){
catima::Projectile p{12,6,6,1000};
catima::Material water({
{1.00794,1,2},
{15.9994,8,1}
});
water.density(1.0);
water.thickness(1.0);
catima::Material graphite;
graphite.add_element(12,6,1);
graphite.density(2.0);
graphite.thickness(0.5);
double dif;
auto res = catima::calculate(p,water);
dif = res.tof - 0.038;
EXPECT( fabs(dif) < 0.01);
},
CASE("result from stopped material"){
catima::Projectile p{12,6,6,1000};
catima::Material water({
{1.00794,1,2},
{15.9994,8,1}
});
water.density(1.0);
water.thickness(1000.0);
auto res = catima::calculate(p,water);
EXPECT(res.Eout == 0.0);
EXPECT(res.Eloss == 1000*12);
EXPECT(res.sigma_E == 0.0);
EXPECT(res.sigma_a == 0.0);
EXPECT(res.sigma_r > 0.0);
EXPECT(res.dEdxo == 0.0);
EXPECT(res.tof == 0.0);
catima::Layers mat;
mat.add(water);
auto res2= catima::calculate(p,mat);
EXPECT(res2.results.size() == 1);
EXPECT(res2.total_result.Eout == res2.results[0].Eout);
EXPECT(res2.total_result.Eout == 0.0);
EXPECT(res2.total_result.Eloss == 1000*12);
EXPECT(res2.total_result.sigma_E == 0.0);
EXPECT(res2.total_result.sigma_a == 0.0);
EXPECT(res2.total_result.tof == 0.0);
},
CASE("constant results from material"){
catima::Projectile p{12,6,6,1000};
catima::Material water({
{1.00794,1,2},
{15.9994,8,1}
});
water.density(1.0);
water.thickness(10.0);
auto res = catima::calculate(p,water);
auto res2 = catima::calculate(p,water);
EXPECT(res.Eout == res2.Eout);
EXPECT(res.Eloss == res2.Eloss);
EXPECT(res.sigma_E == res2.sigma_E);
EXPECT(res.sigma_a == res2.sigma_a);
EXPECT(res.sigma_r == res2.sigma_r);
EXPECT(res.dEdxo == res2.dEdxo);
EXPECT(res.tof == res2.tof);
},
CASE("simplified calculation"){
catima::Projectile p{12,6,6,1000};
catima::Material graphite({
{12.011,6,1},
});
graphite.density(2.0).thickness(1.0);
auto res1 = catima::calculate(p,graphite);
auto res2 = catima::calculate(12,6,1000,12.011,6,1.0,2.0);
EXPECT(res1.Eout == res2.Eout);
EXPECT(res1.Eloss == res2.Eloss);
EXPECT(res1.sigma_E == res2.sigma_E);
EXPECT(res1.sigma_a == res2.sigma_a);
EXPECT(res1.sigma_r == res2.sigma_r);
EXPECT(res1.dEdxo == res2.dEdxo);
EXPECT(res1.tof == res2.tof);
auto ra = catima::angular_straggling_from_E(p,res1.Ein,res1.Eout,graphite);
EXPECT(res1.sigma_a == ra);
auto re = catima::energy_straggling_from_E(p,res1.Ein,res1.Eout,graphite);
EXPECT(res1.sigma_E == re);
auto eo1 = catima::energy_out(p(1000),graphite);
EXPECT(res1.Eout == eo1);
auto de1 = catima::dedx_from_range(p(1000),graphite);
EXPECT(res1.dEdxi == de1);
},
CASE("multilayer basic"){
catima::Projectile p{12,6,6,1000};
catima::Material water({
{1.00794,1,2},
{15.9994,8,1}
});
water.density(1.0);
water.thickness(10.0);
catima::Material graphite({
{12.011,6,1},
});
graphite.density(2.0).thickness(1.0);
catima::Layers mat;
mat.add(water);
mat.add(graphite);
auto res = catima::calculate(p(1000),mat);
EXPECT(res.total_result.Eout == approx(926.3,0.1));
EXPECT(res.total_result.sigma_a == approx(0.00269).R(0.05));
EXPECT(res.total_result.tof == approx(0.402).R(0.001));
EXPECT(res.total_result.Eloss == approx(884.2,1.0));
//EXPECT(rcompare(res.total_result.sigma_E,0.7067,0.2));
EXPECT(res.results[0].Eout == approx(932.24,0.1));
EXPECT(res.results[0].sigma_a == approx(0.00258).R(0.05));
EXPECT(res.results[0].range == approx(107.163,0.1));
EXPECT(res.results[1].Eout == approx(926.3,0.1));
EXPECT(res.results[1].sigma_a == approx(0.000774).R(0.05));
EXPECT(res.results[1].range == approx(111.3,0.1));
auto res0 = catima::calculate(p(1000),water);
EXPECT(res0.Eout == res.results[0].Eout);
EXPECT(res0.sigma_a == res.results[0].sigma_a);
EXPECT(res0.sigma_E == res.results[0].sigma_E);
EXPECT(res0.sigma_r == res.results[0].sigma_r);
EXPECT(res0.tof == res.results[0].tof);
},
CASE("default material calculations"){
catima::Projectile p{12,6,6,350};
auto air = catima::get_material(catima::material::Air);
air.thickness(0.500);
auto res = catima::calculate(p(350),air);
EXPECT(res.Eout == approx(345.6).epsilon(1.0));
EXPECT(res.sigma_a == approx(0.0013).epsilon(1e-4));
EXPECT(res.sigma_E == approx(0.12).epsilon(1e-3));
EXPECT(res.dEdxi == approx(103.5).epsilon(1e-1));
res = catima::calculate(p(150),air);
EXPECT(res.dEdxi == approx(173.6).epsilon(1e0));
res = catima::calculate(p(1000),air);
EXPECT(res.dEdxi == approx(70.69).epsilon(1e-0));
auto water = catima::get_material(catima::material::Water);
auto res2 = catima::calculate(p(600),water,600);
EXPECT(res2.dEdxi == approx(92.5).epsilon(2));
},
CASE("z_eff"){
using namespace catima;
Projectile p_u(238,92);
Target t;
t.Z = 13;
Config c;
c.z_effective = z_eff_type::pierce_blann;
EXPECT(z_eff_Pierce_Blann(92,beta_from_T(5000.)) == approx(91.8).epsilon(0.2));
EXPECT(z_eff_Pierce_Blann(92,beta_from_T(5000.)) == z_effective(p_u(5000.),t,c));
EXPECT(z_eff_Winger(92,0.99,6) == approx(91.8).epsilon(0.5));
EXPECT(z_eff_Winger(92,beta_from_T(5000.),13) == approx(91.8).epsilon(0.2));
c.z_effective = z_eff_type::winger;
EXPECT(z_eff_Winger(92,beta_from_T(5000.),13) == z_effective(p_u(5000.),t,c));
EXPECT(z_eff_Schiwietz(92,0.99,6) == approx(91.8).epsilon(0.5));
c.z_effective = z_eff_type::schiwietz;
EXPECT(z_eff_Schiwietz(92,beta_from_T(5000.),13) == z_effective(p_u(5000.),t,c));
EXPECT(z_eff_Hubert(92,1900,13) == approx(91.88).epsilon(0.1));
c.z_effective = z_eff_type::hubert;
EXPECT(z_eff_Hubert(92,1900,13) == z_effective(p_u(1900.),t,c));
#ifdef GLOBAL
EXPECT(z_eff_global(92,1900,13) == approx(91.88).epsilon(0.05));
c.z_effective = z_eff_type::global;
EXPECT(z_eff_global(92,1900,13) == z_effective(p_u(1900.),t,c));
EXPECT(z_eff_global(92,1000,13) == approx(91.71).epsilon(0.05));
EXPECT(z_eff_global(92,500,13) == approx(91.22).epsilon(0.1));
EXPECT(z_eff_global(92,100,6) == approx(89.61).epsilon(0.2));
//EXPECT(z_eff_global(92,100,13) == approx(89.42).epsilon(0.1));
//EXPECT(z_eff_global(92,100,29) == approx(88.37).epsilon(0.1));
//EXPECT(z_eff_global(92,50,13) == approx(85.94).epsilon(0.1));
EXPECT(z_eff_global(92,2001,13) == approx(92.0).epsilon(0.01));
EXPECT(z_eff_global(92,2000,13) == approx(92.0).epsilon(0.2));
EXPECT(z_eff_atima14(92,1900,13) == approx(91.88).epsilon(0.05));
c.z_effective = z_eff_type::atima14;
EXPECT(z_eff_atima14(92,1900,13) == z_effective(p_u(1900.),t,c));
#endif
},
CASE("vector_inputs"){
catima::Projectile p{12,6,6,1000};
catima::Material water({
{1.00794,1,2},
{15.9994,8,1}
});
catima::Material graphite;
graphite.add_element(12,6,1);
graphite.density(2.0);
graphite.thickness(0.5);
auto res = catima::calculate(p,graphite);
EXPECT( res.Eout == approx(997.07,01));
std::vector<double> energies{100,500,1000};
auto res2 = catima::energy_out(p,energies, graphite);
EXPECT(res2.size()==energies.size());
EXPECT(res2[2] == approx(997.07,01));
EXPECT(res2[0] == approx(catima::energy_out(p(energies[0]),graphite),0.1));
EXPECT(res2[1] == approx(catima::energy_out(p(energies[1]),graphite),0.1));
EXPECT(res2[2] == approx(catima::energy_out(p(energies[2]),graphite),0.1));
auto res3 = catima::dedx_from_range(p,energies,graphite);
EXPECT(res3.size()==energies.size());
EXPECT(res3[0] == approx(catima::dedx_from_range(p(energies[0]),graphite),0.1));
EXPECT(res3[1] == approx(catima::dedx_from_range(p(energies[1]),graphite),0.1));
EXPECT(res3[2] == approx(catima::dedx_from_range(p(energies[2]),graphite),0.1));
},
CASE("constants"){
using namespace catima;
EXPECT(0.1*hbar*c_light/atomic_mass_unit == approx(0.21183,0.0001));
EXPECT(16.0*dedx_constant*electron_mass*fine_structure/(atomic_mass_unit*3.0*4.0*M_PI) == approx(5.21721169334564e-7).R(1e-3));
}
};
int main( int argc, char * argv[] )
{
return lest::run( specification, argc, argv );
}