mirror of
https://github.com/gwm17/catima.git
synced 2024-12-03 07:28:49 -05:00
438 lines
15 KiB
C++
438 lines
15 KiB
C++
#include <iostream>
|
|
#include <math.h>
|
|
#include <algorithm>
|
|
#include "catima/catima.h"
|
|
#include "catima/constants.h"
|
|
#include "catima/data_ionisation_potential.h"
|
|
#include "catima/data_atima.h"
|
|
#include "catima/integrator.h"
|
|
#include "catima/storage.h"
|
|
#include "catima/nucdata.h"
|
|
#include "catima/calculations.h"
|
|
|
|
namespace catima{
|
|
|
|
Config default_config;
|
|
|
|
|
|
bool operator==(const Config &a, const Config&b){
|
|
if(std::memcmp(&a,&b,sizeof(Config)) == 0){
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
|
|
double dedx(Projectile &p, double T, const Material &mat, const Config &c){
|
|
double sum = 0;
|
|
double w=0;
|
|
if(T<=0)return 0.0;
|
|
|
|
sum += dedx_n(p,mat);
|
|
|
|
double se=0;
|
|
p.T = T;
|
|
if(p.T<=10){
|
|
se = sezi_dedx_e(p,mat);
|
|
}
|
|
else if(p.T>10 && p.T<30){
|
|
double factor = 0.05 * ( p.T - 10.0 );
|
|
se = (1-factor)*sezi_dedx_e(p,mat) + factor*bethek_dedx_e(p,mat,c);
|
|
}
|
|
else {
|
|
se = bethek_dedx_e(p,mat,c);
|
|
}
|
|
sum+=se;
|
|
|
|
return sum;
|
|
}
|
|
|
|
double domega2dx(Projectile &p, double T, const Material &mat, const Config &c){
|
|
double sum = 0;
|
|
double w=0;
|
|
|
|
for(int i=0;i<mat.ncomponents();i++){
|
|
auto t= mat.get_element(i);
|
|
w = mat.weight_fraction(i);
|
|
p.T = T;
|
|
sum += w*dedx_variance(p,t);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
double da2dx(Projectile &p, double T, const Material &mat, const Config &c){
|
|
double sum = 0;
|
|
double w=0;
|
|
|
|
for(int i=0;i<mat.ncomponents();i++){
|
|
auto t = mat.get_element(i);
|
|
w = mat.weight_fraction(i);
|
|
p.T = T;
|
|
sum += w*angular_scattering_variance(p,t);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
|
|
double range(Projectile &p, double T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
|
|
return range_spline(T);
|
|
}
|
|
|
|
double dedx_from_range(Projectile &p, double T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
|
|
return p.A/range_spline.derivative(T);
|
|
}
|
|
|
|
std::vector<double> dedx_from_range(Projectile &p, const std::vector<double> &T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
|
|
|
|
std::vector<double> dedx;
|
|
dedx.reserve(T.size());
|
|
for(auto e:T){
|
|
if(e<catima::Ezero){
|
|
dedx.push_back(0.0);
|
|
}
|
|
else{
|
|
dedx.push_back(p.A/range_spline.derivative(e));
|
|
}
|
|
}
|
|
return dedx;
|
|
}
|
|
|
|
double range_straggling(Projectile &p, double T, const Material &t, const Config &c){
|
|
double r=0;
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_straggling_spline(energy_table.values,data.range_straggling.data(),energy_table.num);
|
|
return sqrt(range_straggling_spline(T));
|
|
}
|
|
|
|
double range_variance(Projectile &p, double T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_straggling_spline(energy_table.values,data.range_straggling.data(),energy_table.num);
|
|
return range_straggling_spline(T);
|
|
}
|
|
|
|
double domega2de(Projectile &p, double T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_straggling_spline(energy_table.values,data.range_straggling.data(),energy_table.num);
|
|
return range_straggling_spline.derivative(T);
|
|
}
|
|
|
|
double da2de(Projectile &p, double T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
|
|
return angular_variance_spline.derivative(T);
|
|
}
|
|
|
|
double angular_straggling_from_E(Projectile &p, double T, double Tout, const Material &t, const Config &c){
|
|
double r=0;
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator angular_straggling_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
|
|
return sqrt(angular_straggling_spline(T) - angular_straggling_spline(Tout));
|
|
}
|
|
|
|
double energy_straggling_from_E(Projectile &p, double T, double Tout,const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
|
|
Interpolator range_straggling_spline(energy_table.values,data.range_straggling.data(),energy_table.num);
|
|
Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
|
|
double dEdxo = p.A/range_spline.derivative(Tout);
|
|
return dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(Tout))/p.A;
|
|
}
|
|
|
|
double energy_out(double T, double thickness, Interpolator &range_spline){
|
|
constexpr double epsilon = 1E-5;
|
|
int counter = 0;
|
|
double lo=0,hi=T;
|
|
double range;
|
|
double dedx;
|
|
double e,r;
|
|
double step;
|
|
|
|
range = range_spline(T);
|
|
dedx = 1.0/range_spline.derivative(T);
|
|
if(range<= thickness) return 0.0;
|
|
|
|
e = T - (thickness*dedx);
|
|
while(1){
|
|
r = range - range_spline(e) - thickness;
|
|
if(fabs(r)<epsilon)return e;
|
|
step = -r*dedx;
|
|
e = e-step;
|
|
if(e<Ezero)return 0.0;
|
|
dedx = 1.0/range_spline.derivative(e);
|
|
counter++;
|
|
if(counter>100){printf("too many iterations finding Eout");return -1;}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
double energy_out(Projectile &p, double T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
|
|
return energy_out(T,t.thickness(),range_spline);
|
|
}
|
|
|
|
std::vector<double> energy_out(Projectile &p, const std::vector<double> &T, const Material &t, const Config &c){
|
|
auto data = _storage.Get(p,t,c);
|
|
Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
|
|
|
|
std::vector<double> eout;
|
|
eout.reserve(T.size());
|
|
for(auto e:T){
|
|
if(e<catima::Ezero){
|
|
eout.push_back(0.0);
|
|
}
|
|
else{
|
|
eout.push_back(energy_out(e,t.thickness(),range_spline));
|
|
}
|
|
}
|
|
|
|
return eout;
|
|
}
|
|
|
|
Result calculate(Projectile &p, const Material &t, const Config &c){
|
|
Result res;
|
|
double T = p.T;
|
|
if(T<catima::Ezero && T<catima::Ezero-catima::numeric_epsilon){return res;}
|
|
auto data = _storage.Get(p,t,c);
|
|
|
|
Interpolator range_spline(energy_table.values,data.range.data(),energy_table.num);
|
|
res.Ein = T;
|
|
res.range = range_spline(T);
|
|
res.dEdxi = p.A/range_spline.derivative(T);
|
|
res.Eout = energy_out(T,t.thickness(),range_spline);
|
|
|
|
Interpolator range_straggling_spline(energy_table.values,data.range_straggling.data(),energy_table.num);
|
|
|
|
if(res.Eout<Ezero){
|
|
res.dEdxo = 0.0;
|
|
res.sigma_a = 0.0;
|
|
res.tof = 0.0;
|
|
res.sigma_E = 0.0;
|
|
}
|
|
else{
|
|
res.dEdxo = p.A/range_spline.derivative(res.Eout);
|
|
|
|
#ifdef THIN_TARGET_APPROXIMATION
|
|
if(thin_target_limit*res.Ein<res.Eout){
|
|
double edif = (res.Ein-res.Eout);
|
|
double s1 = range_straggling_spline.derivative(T);
|
|
double s2 = range_straggling_spline.derivative(res.Eout);
|
|
res.sigma_E = res.dEdxo*sqrt(edif*0.5*(s1+s2))/p.A;
|
|
|
|
Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
|
|
s1 = angular_variance_spline.derivative(T);
|
|
s2 = angular_variance_spline.derivative(res.Eout);
|
|
res.sigma_a = sqrt(0.5*(s1+s2)*edif);
|
|
}
|
|
else{
|
|
res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A;
|
|
Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
|
|
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
|
|
}
|
|
|
|
#else
|
|
res.sigma_E = res.dEdxo*sqrt(range_straggling_spline(T) - range_straggling_spline(res.Eout))/p.A;
|
|
Interpolator angular_variance_spline(energy_table.values,data.angular_variance.data(),energy_table.num);
|
|
res.sigma_a = sqrt(angular_variance_spline(T) - angular_variance_spline(res.Eout));
|
|
#endif
|
|
if( !(c.skip&skip_tof) && t.thickness()>0){
|
|
//auto tofdata = calculate_tof(p,t,c);
|
|
//Interpolator tof_spline(energy_table.values, tofdata.data(), energy_table.num,interpolation_t::linear);
|
|
//res.tof = tof_spline(res.Ein) - tof_spline(res.Eout);
|
|
res.tof = calculate_tof_from_E(p,res.Eout,t);
|
|
}
|
|
}
|
|
res.sigma_r = sqrt(range_straggling_spline(T));
|
|
res.Eloss = (res.Ein - res.Eout)*p.A;
|
|
return res;
|
|
}
|
|
|
|
MultiResult calculate(Projectile &p, const Layers &layers, const Config &c){
|
|
MultiResult res;
|
|
double e = p.T;
|
|
res.total_result.Ein = e;
|
|
res.results.reserve(layers.num());
|
|
|
|
for(auto&m:layers.get_materials()){
|
|
Result r = calculate(p,m,e,c);
|
|
e = r.Eout;
|
|
res.total_result.sigma_a += r.sigma_a*r.sigma_a;
|
|
res.total_result.Eloss += r.Eloss;
|
|
res.total_result.sigma_E += r.sigma_E*r.sigma_E;
|
|
res.total_result.tof += r.tof;
|
|
res.total_result.Eout = r.Eout;
|
|
res.results.push_back(r);
|
|
}
|
|
if(e>Ezero){
|
|
res.total_result.sigma_a = sqrt(res.total_result.sigma_a);
|
|
res.total_result.sigma_E = sqrt(res.total_result.sigma_E);
|
|
}
|
|
else{
|
|
res.total_result.sigma_a = 0.0;
|
|
res.total_result.sigma_E = 0.0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
Result calculate(double pa, int pz, double T, double ta, double tz, double thickness, double density){
|
|
Projectile p(pa,pz);
|
|
Material m(ta,tz,density,thickness);
|
|
return calculate(p(T),m);
|
|
}
|
|
|
|
std::vector<double> calculate_range(Projectile p, const Material &t, const Config &c){
|
|
double res;
|
|
std::vector<double>values;
|
|
values.reserve(max_datapoints);
|
|
auto fdedx = [&](double x)->double{return 1.0/dedx(p,x,t);};
|
|
|
|
//calculate 1st point to have i-1 element ready for loop
|
|
res = integrator.integrate(fdedx,Ezero,energy_table(0));
|
|
res = p.A*res;
|
|
values.push_back(res);
|
|
|
|
for(int i=1;i<max_datapoints;i++){
|
|
res = integrator.integrate(fdedx,energy_table(i-1),energy_table(i));
|
|
res = p.A*res;
|
|
res += values[i-1];
|
|
values.push_back(res);
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
|
|
std::vector<double> calculate_range_straggling(Projectile p, const Material &t, const Config &c){
|
|
double res;
|
|
std::vector<double>values;
|
|
values.reserve(max_datapoints);
|
|
auto function = [&](double x)->double{return 1.0*domega2dx(p,x,t)/pow(dedx(p,x,t),3);};
|
|
//auto function = [&](double x)->double{
|
|
//double de = dedx(p,x,t);
|
|
//return 1.0*domega2dx(p,x,t)/(de*de*de);
|
|
//};
|
|
//calculate 1st point to have i-1 element ready for loop
|
|
res = integrator.integrate(function,Ezero,energy_table(0));
|
|
res = p.A*res;
|
|
values.push_back(res);
|
|
for(int i=1;i<max_datapoints;i++){
|
|
res = integrator.integrate(function,energy_table(i-1),energy_table(i));
|
|
res = p.A*res;
|
|
res += values[i-1];
|
|
values.push_back(res);
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
std::vector<double> calculate_da2dx(Projectile p, const Material &t, const Config &c){
|
|
double res;
|
|
std::vector<double>values;
|
|
values.reserve(max_datapoints);
|
|
//auto function = [&](double x)->double{return p.A*da2dx(p,x,t)/dedx(p,x,t);};
|
|
auto function = [&](double x)->double{return 1.0/dedx(p,x,t);};
|
|
res = integrator.integrate(function,Ezero,energy_table(0));
|
|
res = p.A*da2dx(p,energy_table(0),t)*res;
|
|
values.push_back(res);
|
|
for(int i=1;i<max_datapoints;i++){
|
|
res = integrator.integrate(function,energy_table(i-1),energy_table(i));
|
|
res = p.A*da2dx(p,energy_table(i),t)*res;
|
|
res += values[i-1];
|
|
values.push_back(res);
|
|
}
|
|
return values;
|
|
}
|
|
|
|
std::vector<double> calculate_tof(Projectile p, const Material &t, const Config &c){
|
|
double res;
|
|
std::vector<double> values;
|
|
values.reserve(max_datapoints);
|
|
auto function = [&](double x)->double{return 1.0/(dedx(p,x,t)*beta_from_T(x));};
|
|
res = integrator.integrate(function,Ezero,energy_table(0));
|
|
res = res*10.0*p.A/(c_light*t.density());
|
|
values.push_back(res);
|
|
for(int i=1;i<max_datapoints;i++){
|
|
res = integrator.integrate(function,energy_table(i-1),energy_table(i));
|
|
res = res*10.0*p.A/(c_light*t.density());
|
|
res += values[i-1];
|
|
values.push_back(res);
|
|
}
|
|
return values;
|
|
}
|
|
|
|
DataPoint calculate_DataPoint(Projectile p, const Material &t, const Config &c){
|
|
DataPoint dp(p,t,c);
|
|
dp.range.resize(max_datapoints);
|
|
dp.range_straggling.resize(max_datapoints);
|
|
dp.angular_variance.resize(max_datapoints);
|
|
double dedxval;
|
|
auto fdedx = [&](double x)->double{
|
|
return 1.0/dedx(p,x,t,c);
|
|
};
|
|
auto fomega = [&](double x)->double{
|
|
//return 1.0*domega2dx(p,x,t)/pow(dedx(p,x,t),3);
|
|
return domega2dx(p,x,t,c)/catima::power(dedx(p,x,t,c),3);
|
|
};
|
|
|
|
double res;
|
|
//calculate 1st point to have i-1 element ready for loop
|
|
//res = integrator.integrate(fdedx,Ezero,energy_table(0));
|
|
//res = p.A*res;
|
|
//dp.range[0] = res;
|
|
dp.range[0] = 0.0;
|
|
|
|
res = da2dx(p,energy_table(0),t)*res;
|
|
dp.angular_variance[0] = 0.0;
|
|
|
|
//res = integrator.integrate(fomega,Ezero,energy_table(0));
|
|
//res = p.A*res;
|
|
dp.range_straggling[0]=0.0;
|
|
|
|
for(int i=1;i<max_datapoints;i++){
|
|
res = p.A*integrator.integrate(fdedx,energy_table(i-1),energy_table(i));
|
|
dp.range[i] = res + dp.range[i-1];
|
|
res = da2dx(p,energy_table(i),t)*res;
|
|
dp.angular_variance[i] = res + dp.angular_variance[i-1];
|
|
|
|
res = integrator.integrate(fomega,energy_table(i-1),energy_table(i));
|
|
res = p.A*res;
|
|
dp.range_straggling[i] = res + dp.range_straggling[i-1];
|
|
}
|
|
return dp;
|
|
}
|
|
|
|
double calculate_tof_from_E(Projectile p, double Eout, const Material &t, const Config &c){
|
|
double res;
|
|
//double beta_in = beta_from_T(p.T);
|
|
//double beta_out = beta_from_T(Eout);
|
|
auto function = [&](double x)->double{return 1.0/(dedx(p,x,t)*beta_from_T(x));};
|
|
res = integrator.integrate(function,Eout,p.T);
|
|
res = res*10.0*p.A/(c_light*t.density());
|
|
return res;
|
|
}
|
|
|
|
double w_magnification(Projectile p, double Ein, const Material &t, const Config &c){
|
|
double res = 1.0;
|
|
if(t.density()<= 0.0 || t.thickness()<=0){
|
|
return res;
|
|
}
|
|
std::vector<double> energies{0.99*Ein, Ein, 1.1*Ein};
|
|
auto eres = energy_out(p,energies,t,c);
|
|
if(eres[0]>0.0 && eres[1]>0.0 && eres[2]>0.0){
|
|
res = energies[1]*(eres[2]-eres[0])/(eres[1]*(energies[2]-energies[0]));
|
|
}
|
|
else {
|
|
res = 0.0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
} // end of atima namespace
|