mirror of
https://github.com/gwm17/glfw.git
synced 2024-11-22 18:28:52 -05:00
Update linmath.h
This updates our linmath.h to the latest version plus minor local fixes for MSVC and Clang. Fixes #1653.
This commit is contained in:
parent
9516df52a4
commit
350ba73267
197
deps/linmath.h
vendored
197
deps/linmath.h
vendored
|
@ -3,31 +3,40 @@
|
|||
|
||||
#include <math.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define inline __inline
|
||||
/* 2020-03-02 Camilla Löwy <elmindreda@elmindreda.org>
|
||||
* - Added inclusion of string.h for memcpy
|
||||
* - Replaced tan and acos with tanf and acosf
|
||||
* - Replaced double constants with float equivalents
|
||||
*/
|
||||
#include <string.h>
|
||||
|
||||
#ifdef LINMATH_NO_INLINE
|
||||
#define LINMATH_H_FUNC static
|
||||
#else
|
||||
#define LINMATH_H_FUNC static inline
|
||||
#endif
|
||||
|
||||
#define LINMATH_H_DEFINE_VEC(n) \
|
||||
typedef float vec##n[n]; \
|
||||
static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
|
||||
LINMATH_H_FUNC void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
|
||||
{ \
|
||||
int i; \
|
||||
for(i=0; i<n; ++i) \
|
||||
r[i] = a[i] + b[i]; \
|
||||
} \
|
||||
static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
|
||||
LINMATH_H_FUNC void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
|
||||
{ \
|
||||
int i; \
|
||||
for(i=0; i<n; ++i) \
|
||||
r[i] = a[i] - b[i]; \
|
||||
} \
|
||||
static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \
|
||||
LINMATH_H_FUNC void vec##n##_scale(vec##n r, vec##n const v, float const s) \
|
||||
{ \
|
||||
int i; \
|
||||
for(i=0; i<n; ++i) \
|
||||
r[i] = v[i] * s; \
|
||||
} \
|
||||
static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \
|
||||
LINMATH_H_FUNC float vec##n##_mul_inner(vec##n const a, vec##n const b) \
|
||||
{ \
|
||||
float p = 0.; \
|
||||
int i; \
|
||||
|
@ -35,28 +44,40 @@ static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \
|
|||
p += b[i]*a[i]; \
|
||||
return p; \
|
||||
} \
|
||||
static inline float vec##n##_len(vec##n const v) \
|
||||
LINMATH_H_FUNC float vec##n##_len(vec##n const v) \
|
||||
{ \
|
||||
return (float) sqrt(vec##n##_mul_inner(v,v)); \
|
||||
return sqrtf(vec##n##_mul_inner(v,v)); \
|
||||
} \
|
||||
static inline void vec##n##_norm(vec##n r, vec##n const v) \
|
||||
LINMATH_H_FUNC void vec##n##_norm(vec##n r, vec##n const v) \
|
||||
{ \
|
||||
float k = 1.f / vec##n##_len(v); \
|
||||
vec##n##_scale(r, v, k); \
|
||||
} \
|
||||
LINMATH_H_FUNC void vec##n##_min(vec##n r, vec##n const a, vec##n const b) \
|
||||
{ \
|
||||
int i; \
|
||||
for(i=0; i<n; ++i) \
|
||||
r[i] = a[i]<b[i] ? a[i] : b[i]; \
|
||||
} \
|
||||
LINMATH_H_FUNC void vec##n##_max(vec##n r, vec##n const a, vec##n const b) \
|
||||
{ \
|
||||
int i; \
|
||||
for(i=0; i<n; ++i) \
|
||||
r[i] = a[i]>b[i] ? a[i] : b[i]; \
|
||||
}
|
||||
|
||||
LINMATH_H_DEFINE_VEC(2)
|
||||
LINMATH_H_DEFINE_VEC(3)
|
||||
LINMATH_H_DEFINE_VEC(4)
|
||||
|
||||
static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
|
||||
LINMATH_H_FUNC void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
|
||||
{
|
||||
r[0] = a[1]*b[2] - a[2]*b[1];
|
||||
r[1] = a[2]*b[0] - a[0]*b[2];
|
||||
r[2] = a[0]*b[1] - a[1]*b[0];
|
||||
}
|
||||
|
||||
static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
|
||||
LINMATH_H_FUNC void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
|
||||
{
|
||||
float p = 2.f*vec3_mul_inner(v, n);
|
||||
int i;
|
||||
|
@ -64,7 +85,7 @@ static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
|
|||
r[i] = v[i] - p*n[i];
|
||||
}
|
||||
|
||||
static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
|
||||
LINMATH_H_FUNC void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
|
||||
{
|
||||
r[0] = a[1]*b[2] - a[2]*b[1];
|
||||
r[1] = a[2]*b[0] - a[0]*b[2];
|
||||
|
@ -72,7 +93,7 @@ static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
|
|||
r[3] = 1.f;
|
||||
}
|
||||
|
||||
static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
|
||||
LINMATH_H_FUNC void vec4_reflect(vec4 r, vec4 v, vec4 n)
|
||||
{
|
||||
float p = 2.f*vec4_mul_inner(v, n);
|
||||
int i;
|
||||
|
@ -81,58 +102,58 @@ static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
|
|||
}
|
||||
|
||||
typedef vec4 mat4x4[4];
|
||||
static inline void mat4x4_identity(mat4x4 M)
|
||||
LINMATH_H_FUNC void mat4x4_identity(mat4x4 M)
|
||||
{
|
||||
int i, j;
|
||||
for(i=0; i<4; ++i)
|
||||
for(j=0; j<4; ++j)
|
||||
M[i][j] = i==j ? 1.f : 0.f;
|
||||
}
|
||||
static inline void mat4x4_dup(mat4x4 M, mat4x4 N)
|
||||
LINMATH_H_FUNC void mat4x4_dup(mat4x4 M, mat4x4 N)
|
||||
{
|
||||
int i, j;
|
||||
for(i=0; i<4; ++i)
|
||||
for(j=0; j<4; ++j)
|
||||
M[i][j] = N[i][j];
|
||||
}
|
||||
static inline void mat4x4_row(vec4 r, mat4x4 M, int i)
|
||||
LINMATH_H_FUNC void mat4x4_row(vec4 r, mat4x4 M, int i)
|
||||
{
|
||||
int k;
|
||||
for(k=0; k<4; ++k)
|
||||
r[k] = M[k][i];
|
||||
}
|
||||
static inline void mat4x4_col(vec4 r, mat4x4 M, int i)
|
||||
LINMATH_H_FUNC void mat4x4_col(vec4 r, mat4x4 M, int i)
|
||||
{
|
||||
int k;
|
||||
for(k=0; k<4; ++k)
|
||||
r[k] = M[i][k];
|
||||
}
|
||||
static inline void mat4x4_transpose(mat4x4 M, mat4x4 N)
|
||||
LINMATH_H_FUNC void mat4x4_transpose(mat4x4 M, mat4x4 N)
|
||||
{
|
||||
int i, j;
|
||||
for(j=0; j<4; ++j)
|
||||
for(i=0; i<4; ++i)
|
||||
M[i][j] = N[j][i];
|
||||
}
|
||||
static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
|
||||
LINMATH_H_FUNC void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
|
||||
{
|
||||
int i;
|
||||
for(i=0; i<4; ++i)
|
||||
vec4_add(M[i], a[i], b[i]);
|
||||
}
|
||||
static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
|
||||
LINMATH_H_FUNC void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
|
||||
{
|
||||
int i;
|
||||
for(i=0; i<4; ++i)
|
||||
vec4_sub(M[i], a[i], b[i]);
|
||||
}
|
||||
static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
|
||||
LINMATH_H_FUNC void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
|
||||
{
|
||||
int i;
|
||||
for(i=0; i<4; ++i)
|
||||
vec4_scale(M[i], a[i], k);
|
||||
}
|
||||
static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
|
||||
LINMATH_H_FUNC void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
|
||||
{
|
||||
int i;
|
||||
vec4_scale(M[0], a[0], x);
|
||||
|
@ -142,7 +163,7 @@ static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, floa
|
|||
M[3][i] = a[3][i];
|
||||
}
|
||||
}
|
||||
static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
|
||||
LINMATH_H_FUNC void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
|
||||
{
|
||||
mat4x4 temp;
|
||||
int k, r, c;
|
||||
|
@ -153,7 +174,7 @@ static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
|
|||
}
|
||||
mat4x4_dup(M, temp);
|
||||
}
|
||||
static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
|
||||
LINMATH_H_FUNC void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
|
||||
{
|
||||
int i, j;
|
||||
for(j=0; j<4; ++j) {
|
||||
|
@ -162,14 +183,14 @@ static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
|
|||
r[j] += M[i][j] * v[i];
|
||||
}
|
||||
}
|
||||
static inline void mat4x4_translate(mat4x4 T, float x, float y, float z)
|
||||
LINMATH_H_FUNC void mat4x4_translate(mat4x4 T, float x, float y, float z)
|
||||
{
|
||||
mat4x4_identity(T);
|
||||
T[3][0] = x;
|
||||
T[3][1] = y;
|
||||
T[3][2] = z;
|
||||
}
|
||||
static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
|
||||
LINMATH_H_FUNC void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
|
||||
{
|
||||
vec4 t = {x, y, z, 0};
|
||||
vec4 r;
|
||||
|
@ -179,33 +200,32 @@ static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z
|
|||
M[3][i] += vec4_mul_inner(r, t);
|
||||
}
|
||||
}
|
||||
static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
|
||||
LINMATH_H_FUNC void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
|
||||
{
|
||||
int i, j;
|
||||
for(i=0; i<4; ++i) for(j=0; j<4; ++j)
|
||||
M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f;
|
||||
}
|
||||
static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
|
||||
LINMATH_H_FUNC void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
|
||||
{
|
||||
float s = sinf(angle);
|
||||
float c = cosf(angle);
|
||||
vec3 u = {x, y, z};
|
||||
|
||||
if(vec3_len(u) > 1e-4) {
|
||||
mat4x4 T, C, S = {{0}};
|
||||
|
||||
vec3_norm(u, u);
|
||||
mat4x4 T;
|
||||
mat4x4_from_vec3_mul_outer(T, u, u);
|
||||
|
||||
S[1][2] = u[0];
|
||||
S[2][1] = -u[0];
|
||||
S[2][0] = u[1];
|
||||
S[0][2] = -u[1];
|
||||
S[0][1] = u[2];
|
||||
S[1][0] = -u[2];
|
||||
|
||||
mat4x4 S = {
|
||||
{ 0, u[2], -u[1], 0},
|
||||
{-u[2], 0, u[0], 0},
|
||||
{ u[1], -u[0], 0, 0},
|
||||
{ 0, 0, 0, 0}
|
||||
};
|
||||
mat4x4_scale(S, S, s);
|
||||
|
||||
mat4x4 C;
|
||||
mat4x4_identity(C);
|
||||
mat4x4_sub(C, C, T);
|
||||
|
||||
|
@ -220,7 +240,7 @@ static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z,
|
|||
mat4x4_dup(R, M);
|
||||
}
|
||||
}
|
||||
static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
|
||||
LINMATH_H_FUNC void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
|
||||
{
|
||||
float s = sinf(angle);
|
||||
float c = cosf(angle);
|
||||
|
@ -232,7 +252,7 @@ static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
|
|||
};
|
||||
mat4x4_mul(Q, M, R);
|
||||
}
|
||||
static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
|
||||
LINMATH_H_FUNC void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
|
||||
{
|
||||
float s = sinf(angle);
|
||||
float c = cosf(angle);
|
||||
|
@ -244,7 +264,7 @@ static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
|
|||
};
|
||||
mat4x4_mul(Q, M, R);
|
||||
}
|
||||
static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
|
||||
LINMATH_H_FUNC void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
|
||||
{
|
||||
float s = sinf(angle);
|
||||
float c = cosf(angle);
|
||||
|
@ -256,9 +276,8 @@ static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
|
|||
};
|
||||
mat4x4_mul(Q, M, R);
|
||||
}
|
||||
static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
|
||||
LINMATH_H_FUNC void mat4x4_invert(mat4x4 T, mat4x4 M)
|
||||
{
|
||||
float idet;
|
||||
float s[6];
|
||||
float c[6];
|
||||
s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1];
|
||||
|
@ -276,7 +295,7 @@ static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
|
|||
c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3];
|
||||
|
||||
/* Assumes it is invertible */
|
||||
idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] );
|
||||
float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] );
|
||||
|
||||
T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
|
||||
T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
|
||||
|
@ -298,17 +317,12 @@ static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
|
|||
T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
|
||||
T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
|
||||
}
|
||||
static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
|
||||
LINMATH_H_FUNC void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
|
||||
{
|
||||
mat4x4_dup(R, M);
|
||||
float s = 1.;
|
||||
vec3 h;
|
||||
|
||||
mat4x4_dup(R, M);
|
||||
vec3_norm(R[2], R[2]);
|
||||
|
||||
s = vec3_mul_inner(R[1], R[2]);
|
||||
vec3_scale(h, R[2], s);
|
||||
vec3_sub(R[1], R[1], h);
|
||||
vec3_norm(R[2], R[2]);
|
||||
|
||||
s = vec3_mul_inner(R[1], R[2]);
|
||||
|
@ -316,13 +330,17 @@ static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
|
|||
vec3_sub(R[1], R[1], h);
|
||||
vec3_norm(R[1], R[1]);
|
||||
|
||||
s = vec3_mul_inner(R[0], R[2]);
|
||||
vec3_scale(h, R[2], s);
|
||||
vec3_sub(R[0], R[0], h);
|
||||
|
||||
s = vec3_mul_inner(R[0], R[1]);
|
||||
vec3_scale(h, R[1], s);
|
||||
vec3_sub(R[0], R[0], h);
|
||||
vec3_norm(R[0], R[0]);
|
||||
}
|
||||
|
||||
static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
|
||||
LINMATH_H_FUNC void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
|
||||
{
|
||||
M[0][0] = 2.f*n/(r-l);
|
||||
M[0][1] = M[0][2] = M[0][3] = 0.f;
|
||||
|
@ -338,7 +356,7 @@ static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t,
|
|||
M[3][2] = -2.f*(f*n)/(f-n);
|
||||
M[3][0] = M[3][1] = M[3][3] = 0.f;
|
||||
}
|
||||
static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
|
||||
LINMATH_H_FUNC void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
|
||||
{
|
||||
M[0][0] = 2.f/(r-l);
|
||||
M[0][1] = M[0][2] = M[0][3] = 0.f;
|
||||
|
@ -354,11 +372,11 @@ static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, fl
|
|||
M[3][2] = -(f+n)/(f-n);
|
||||
M[3][3] = 1.f;
|
||||
}
|
||||
static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
|
||||
LINMATH_H_FUNC void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
|
||||
{
|
||||
/* NOTE: Degrees are an unhandy unit to work with.
|
||||
* linmath.h uses radians for everything! */
|
||||
float const a = 1.f / (float) tan(y_fov / 2.f);
|
||||
float const a = 1.f / tanf(y_fov / 2.f);
|
||||
|
||||
m[0][0] = a / aspect;
|
||||
m[0][1] = 0.f;
|
||||
|
@ -380,7 +398,7 @@ static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float
|
|||
m[3][2] = -((2.f * f * n) / (f - n));
|
||||
m[3][3] = 0.f;
|
||||
}
|
||||
static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
|
||||
LINMATH_H_FUNC void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
|
||||
{
|
||||
/* Adapted from Android's OpenGL Matrix.java. */
|
||||
/* See the OpenGL GLUT documentation for gluLookAt for a description */
|
||||
|
@ -389,15 +407,14 @@ static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
|
|||
/* TODO: The negation of of can be spared by swapping the order of
|
||||
* operands in the following cross products in the right way. */
|
||||
vec3 f;
|
||||
vec3 s;
|
||||
vec3 t;
|
||||
|
||||
vec3_sub(f, center, eye);
|
||||
vec3_norm(f, f);
|
||||
|
||||
vec3 s;
|
||||
vec3_mul_cross(s, f, up);
|
||||
vec3_norm(s, s);
|
||||
|
||||
vec3 t;
|
||||
vec3_mul_cross(t, s, f);
|
||||
|
||||
m[0][0] = s[0];
|
||||
|
@ -424,24 +441,24 @@ static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
|
|||
}
|
||||
|
||||
typedef float quat[4];
|
||||
static inline void quat_identity(quat q)
|
||||
LINMATH_H_FUNC void quat_identity(quat q)
|
||||
{
|
||||
q[0] = q[1] = q[2] = 0.f;
|
||||
q[3] = 1.f;
|
||||
}
|
||||
static inline void quat_add(quat r, quat a, quat b)
|
||||
LINMATH_H_FUNC void quat_add(quat r, quat a, quat b)
|
||||
{
|
||||
int i;
|
||||
for(i=0; i<4; ++i)
|
||||
r[i] = a[i] + b[i];
|
||||
}
|
||||
static inline void quat_sub(quat r, quat a, quat b)
|
||||
LINMATH_H_FUNC void quat_sub(quat r, quat a, quat b)
|
||||
{
|
||||
int i;
|
||||
for(i=0; i<4; ++i)
|
||||
r[i] = a[i] - b[i];
|
||||
}
|
||||
static inline void quat_mul(quat r, quat p, quat q)
|
||||
LINMATH_H_FUNC void quat_mul(quat r, quat p, quat q)
|
||||
{
|
||||
vec3 w;
|
||||
vec3_mul_cross(r, p, q);
|
||||
|
@ -451,13 +468,13 @@ static inline void quat_mul(quat r, quat p, quat q)
|
|||
vec3_add(r, r, w);
|
||||
r[3] = p[3]*q[3] - vec3_mul_inner(p, q);
|
||||
}
|
||||
static inline void quat_scale(quat r, quat v, float s)
|
||||
LINMATH_H_FUNC void quat_scale(quat r, quat v, float s)
|
||||
{
|
||||
int i;
|
||||
for(i=0; i<4; ++i)
|
||||
r[i] = v[i] * s;
|
||||
}
|
||||
static inline float quat_inner_product(quat a, quat b)
|
||||
LINMATH_H_FUNC float quat_inner_product(quat a, quat b)
|
||||
{
|
||||
float p = 0.f;
|
||||
int i;
|
||||
|
@ -465,42 +482,43 @@ static inline float quat_inner_product(quat a, quat b)
|
|||
p += b[i]*a[i];
|
||||
return p;
|
||||
}
|
||||
static inline void quat_conj(quat r, quat q)
|
||||
LINMATH_H_FUNC void quat_conj(quat r, quat q)
|
||||
{
|
||||
int i;
|
||||
for(i=0; i<3; ++i)
|
||||
r[i] = -q[i];
|
||||
r[3] = q[3];
|
||||
}
|
||||
static inline void quat_rotate(quat r, float angle, vec3 axis) {
|
||||
int i;
|
||||
LINMATH_H_FUNC void quat_rotate(quat r, float angle, vec3 axis) {
|
||||
vec3 v;
|
||||
vec3_scale(v, axis, sinf(angle / 2));
|
||||
int i;
|
||||
for(i=0; i<3; ++i)
|
||||
r[i] = v[i];
|
||||
r[3] = cosf(angle / 2);
|
||||
}
|
||||
#define quat_norm vec4_norm
|
||||
static inline void quat_mul_vec3(vec3 r, quat q, vec3 v)
|
||||
LINMATH_H_FUNC void quat_mul_vec3(vec3 r, quat q, vec3 v)
|
||||
{
|
||||
/*
|
||||
* Method by Fabian 'ryg' Giessen (of Farbrausch)
|
||||
t = 2 * cross(q.xyz, v)
|
||||
v' = v + q.w * t + cross(q.xyz, t)
|
||||
*/
|
||||
vec3 t = {q[0], q[1], q[2]};
|
||||
vec3 t;
|
||||
vec3 q_xyz = {q[0], q[1], q[2]};
|
||||
vec3 u = {q[0], q[1], q[2]};
|
||||
|
||||
vec3_mul_cross(t, t, v);
|
||||
vec3_mul_cross(t, q_xyz, v);
|
||||
vec3_scale(t, t, 2);
|
||||
|
||||
vec3_mul_cross(u, u, t);
|
||||
vec3_mul_cross(u, q_xyz, t);
|
||||
vec3_scale(t, t, q[3]);
|
||||
|
||||
vec3_add(r, v, t);
|
||||
vec3_add(r, r, u);
|
||||
}
|
||||
static inline void mat4x4_from_quat(mat4x4 M, quat q)
|
||||
LINMATH_H_FUNC void mat4x4_from_quat(mat4x4 M, quat q)
|
||||
{
|
||||
float a = q[3];
|
||||
float b = q[0];
|
||||
|
@ -530,7 +548,7 @@ static inline void mat4x4_from_quat(mat4x4 M, quat q)
|
|||
M[3][3] = 1.f;
|
||||
}
|
||||
|
||||
static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
|
||||
LINMATH_H_FUNC void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
|
||||
{
|
||||
/* XXX: The way this is written only works for othogonal matrices. */
|
||||
/* TODO: Take care of non-orthogonal case. */
|
||||
|
@ -541,7 +559,7 @@ static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
|
|||
R[3][0] = R[3][1] = R[3][2] = 0.f;
|
||||
R[3][3] = 1.f;
|
||||
}
|
||||
static inline void quat_from_mat4x4(quat q, mat4x4 M)
|
||||
LINMATH_H_FUNC void quat_from_mat4x4(quat q, mat4x4 M)
|
||||
{
|
||||
float r=0.f;
|
||||
int i;
|
||||
|
@ -557,7 +575,7 @@ static inline void quat_from_mat4x4(quat q, mat4x4 M)
|
|||
p = &perm[i];
|
||||
}
|
||||
|
||||
r = (float) sqrt(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] );
|
||||
r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] );
|
||||
|
||||
if(r < 1e-6) {
|
||||
q[0] = 1.f;
|
||||
|
@ -571,4 +589,33 @@ static inline void quat_from_mat4x4(quat q, mat4x4 M)
|
|||
q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r);
|
||||
}
|
||||
|
||||
LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 M, vec2 _a, vec2 _b, float s)
|
||||
{
|
||||
vec2 a; memcpy(a, _a, sizeof(a));
|
||||
vec2 b; memcpy(b, _b, sizeof(b));
|
||||
|
||||
float z_a = 0.;
|
||||
float z_b = 0.;
|
||||
|
||||
if(vec2_len(a) < 1.f) {
|
||||
z_a = sqrtf(1.f - vec2_mul_inner(a, a));
|
||||
} else {
|
||||
vec2_norm(a, a);
|
||||
}
|
||||
|
||||
if(vec2_len(b) < 1.f) {
|
||||
z_b = sqrtf(1.f - vec2_mul_inner(b, b));
|
||||
} else {
|
||||
vec2_norm(b, b);
|
||||
}
|
||||
|
||||
vec3 a_ = {a[0], a[1], z_a};
|
||||
vec3 b_ = {b[0], b[1], z_b};
|
||||
|
||||
vec3 c_;
|
||||
vec3_mul_cross(c_, a_, b_);
|
||||
|
||||
float const angle = acosf(vec3_mul_inner(a_, b_)) * s;
|
||||
mat4x4_rotate(R, M, c_[0], c_[1], c_[2], angle);
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue
Block a user