1
0
Fork 0
mirror of https://github.com/gwm17/glfw.git synced 2024-11-26 20:28:49 -05:00
glfw/examples/splitview.c
2010-09-14 03:10:59 +02:00

514 lines
14 KiB
C

//========================================================================
// This is an example program for the GLFW library
//
// The program uses a "split window" view, rendering four views of the
// same scene in one window (e.g. uesful for 3D modelling software). This
// demo uses scissors to separete the four different rendering areas from
// each other.
//
// (If the code seems a little bit strange here and there, it may be
// because I am not a friend of orthogonal projections)
//========================================================================
#include <GL/glfw3.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
//========================================================================
// Global variables
//========================================================================
// Mouse position
static int xpos = 0, ypos = 0;
// Window size
static int width, height;
// Active view: 0 = none, 1 = upper left, 2 = upper right, 3 = lower left,
// 4 = lower right
static int active_view = 0;
// Rotation around each axis
static int rot_x = 0, rot_y = 0, rot_z = 0;
// Do redraw?
static int do_redraw = 1;
//========================================================================
// Draw a solid torus (use a display list for the model)
//========================================================================
#define TORUS_MAJOR 1.5
#define TORUS_MINOR 0.5
#define TORUS_MAJOR_RES 32
#define TORUS_MINOR_RES 32
static void drawTorus( void )
{
static GLuint torus_list = 0;
int i, j, k;
double s, t, x, y, z, nx, ny, nz, scale, twopi;
if( !torus_list )
{
// Start recording displaylist
torus_list = glGenLists( 1 );
glNewList( torus_list, GL_COMPILE_AND_EXECUTE );
// Draw torus
twopi = 2.0 * M_PI;
for( i = 0; i < TORUS_MINOR_RES; i++ )
{
glBegin( GL_QUAD_STRIP );
for( j = 0; j <= TORUS_MAJOR_RES; j++ )
{
for( k = 1; k >= 0; k-- )
{
s = (i + k) % TORUS_MINOR_RES + 0.5;
t = j % TORUS_MAJOR_RES;
// Calculate point on surface
x = (TORUS_MAJOR+TORUS_MINOR*cos(s*twopi/TORUS_MINOR_RES))*cos(t*twopi/TORUS_MAJOR_RES);
y = TORUS_MINOR * sin(s * twopi / TORUS_MINOR_RES);
z = (TORUS_MAJOR+TORUS_MINOR*cos(s*twopi/TORUS_MINOR_RES))*sin(t*twopi/TORUS_MAJOR_RES);
// Calculate surface normal
nx = x - TORUS_MAJOR*cos(t*twopi/TORUS_MAJOR_RES);
ny = y;
nz = z - TORUS_MAJOR*sin(t*twopi/TORUS_MAJOR_RES);
scale = 1.0 / sqrt( nx*nx + ny*ny + nz*nz );
nx *= scale;
ny *= scale;
nz *= scale;
glNormal3f( (float)nx, (float)ny, (float)nz );
glVertex3f( (float)x, (float)y, (float)z );
}
}
glEnd();
}
// Stop recording displaylist
glEndList();
}
else
{
// Playback displaylist
glCallList( torus_list );
}
}
//========================================================================
// Draw the scene (a rotating torus)
//========================================================================
static void drawScene( void )
{
const GLfloat model_diffuse[4] = {1.0f, 0.8f, 0.8f, 1.0f};
const GLfloat model_specular[4] = {0.6f, 0.6f, 0.6f, 1.0f};
const GLfloat model_shininess = 20.0f;
glPushMatrix();
// Rotate the object
glRotatef( (GLfloat)rot_x*0.5f, 1.0f, 0.0f, 0.0f );
glRotatef( (GLfloat)rot_y*0.5f, 0.0f, 1.0f, 0.0f );
glRotatef( (GLfloat)rot_z*0.5f, 0.0f, 0.0f, 1.0f );
// Set model color (used for orthogonal views, lighting disabled)
glColor4fv( model_diffuse );
// Set model material (used for perspective view, lighting enabled)
glMaterialfv( GL_FRONT, GL_DIFFUSE, model_diffuse );
glMaterialfv( GL_FRONT, GL_SPECULAR, model_specular );
glMaterialf( GL_FRONT, GL_SHININESS, model_shininess );
// Draw torus
drawTorus();
glPopMatrix();
}
//========================================================================
// Draw a 2D grid (used for orthogonal views)
//========================================================================
static void drawGrid( float scale, int steps )
{
int i;
float x, y;
glPushMatrix();
// Set background to some dark bluish grey
glClearColor( 0.05f, 0.05f, 0.2f, 0.0f);
glClear( GL_COLOR_BUFFER_BIT );
// Setup modelview matrix (flat XY view)
glLoadIdentity();
gluLookAt( 0.0, 0.0, 1.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0 );
// We don't want to update the Z-buffer
glDepthMask( GL_FALSE );
// Set grid color
glColor3f( 0.0f, 0.5f, 0.5f );
glBegin( GL_LINES );
// Horizontal lines
x = scale * 0.5f * (float)(steps-1);
y = -scale * 0.5f * (float)(steps-1);
for( i = 0; i < steps; i ++ )
{
glVertex3f( -x, y, 0.0f );
glVertex3f( x, y, 0.0f );
y += scale;
}
// Vertical lines
x = -scale * 0.5f * (float)(steps-1);
y = scale * 0.5f * (float)(steps-1);
for( i = 0; i < steps; i ++ )
{
glVertex3f( x, -y, 0.0f );
glVertex3f( x, y, 0.0f );
x += scale;
}
glEnd();
// Enable Z-buffer writing again
glDepthMask( GL_TRUE );
glPopMatrix();
}
//========================================================================
// Draw all views
//========================================================================
static void drawAllViews( void )
{
const GLfloat light_position[4] = {0.0f, 8.0f, 8.0f, 1.0f};
const GLfloat light_diffuse[4] = {1.0f, 1.0f, 1.0f, 1.0f};
const GLfloat light_specular[4] = {1.0f, 1.0f, 1.0f, 1.0f};
const GLfloat light_ambient[4] = {0.2f, 0.2f, 0.3f, 1.0f};
double aspect;
// Calculate aspect of window
if( height > 0 )
{
aspect = (double)width / (double)height;
}
else
{
aspect = 1.0;
}
// Clear screen
glClearColor( 0.0f, 0.0f, 0.0f, 0.0f);
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
// Enable scissor test
glEnable( GL_SCISSOR_TEST );
// Enable depth test
glEnable( GL_DEPTH_TEST );
glDepthFunc( GL_LEQUAL );
// ** ORTHOGONAL VIEWS **
// For orthogonal views, use wireframe rendering
glPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
// Enable line anti-aliasing
glEnable( GL_LINE_SMOOTH );
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
// Setup orthogonal projection matrix
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
glOrtho( -3.0*aspect, 3.0*aspect, -3.0, 3.0, 1.0, 50.0 );
// Upper left view (TOP VIEW)
glViewport( 0, height/2, width/2, height/2 );
glScissor( 0, height/2, width/2, height/2 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
gluLookAt( 0.0f, 10.0f, 1e-3f, // Eye-position (above)
0.0f, 0.0f, 0.0f, // View-point
0.0f, 1.0f, 0.0f ); // Up-vector
drawGrid( 0.5, 12 );
drawScene();
// Lower left view (FRONT VIEW)
glViewport( 0, 0, width/2, height/2 );
glScissor( 0, 0, width/2, height/2 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
gluLookAt( 0.0f, 0.0f, 10.0f, // Eye-position (in front of)
0.0f, 0.0f, 0.0f, // View-point
0.0f, 1.0f, 0.0f ); // Up-vector
drawGrid( 0.5, 12 );
drawScene();
// Lower right view (SIDE VIEW)
glViewport( width/2, 0, width/2, height/2 );
glScissor( width/2, 0, width/2, height/2 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
gluLookAt( 10.0f, 0.0f, 0.0f, // Eye-position (to the right)
0.0f, 0.0f, 0.0f, // View-point
0.0f, 1.0f, 0.0f ); // Up-vector
drawGrid( 0.5, 12 );
drawScene();
// Disable line anti-aliasing
glDisable( GL_LINE_SMOOTH );
glDisable( GL_BLEND );
// ** PERSPECTIVE VIEW **
// For perspective view, use solid rendering
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
// Enable face culling (faster rendering)
glEnable( GL_CULL_FACE );
glCullFace( GL_BACK );
glFrontFace( GL_CW );
// Setup perspective projection matrix
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
gluPerspective( 65.0f, aspect, 1.0f, 50.0f );
// Upper right view (PERSPECTIVE VIEW)
glViewport( width/2, height/2, width/2, height/2 );
glScissor( width/2, height/2, width/2, height/2 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
gluLookAt( 3.0f, 1.5f, 3.0f, // Eye-position
0.0f, 0.0f, 0.0f, // View-point
0.0f, 1.0f, 0.0f ); // Up-vector
// Configure and enable light source 1
glLightfv( GL_LIGHT1, GL_POSITION, light_position );
glLightfv( GL_LIGHT1, GL_AMBIENT, light_ambient );
glLightfv( GL_LIGHT1, GL_DIFFUSE, light_diffuse );
glLightfv( GL_LIGHT1, GL_SPECULAR, light_specular );
glEnable( GL_LIGHT1 );
glEnable( GL_LIGHTING );
// Draw scene
drawScene();
// Disable lighting
glDisable( GL_LIGHTING );
// Disable face culling
glDisable( GL_CULL_FACE );
// Disable depth test
glDisable( GL_DEPTH_TEST );
// Disable scissor test
glDisable( GL_SCISSOR_TEST );
// Draw a border around the active view
if( active_view > 0 && active_view != 2 )
{
glViewport( 0, 0, width, height );
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
glOrtho( 0.0, 2.0, 0.0, 2.0, 0.0, 1.0 );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glColor3f( 1.0f, 1.0f, 0.6f );
glTranslatef( (GLfloat) ((active_view - 1) & 1), (GLfloat) (1 - (active_view - 1) / 2), 0.0f );
glBegin( GL_LINE_STRIP );
glVertex2i( 0, 0 );
glVertex2i( 1, 0 );
glVertex2i( 1, 1 );
glVertex2i( 0, 1 );
glVertex2i( 0, 0 );
glEnd();
}
}
//========================================================================
// Window size callback function
//========================================================================
static void windowSizeFun( GLFWwindow window, int w, int h )
{
width = w;
height = h > 0 ? h : 1;
do_redraw = 1;
}
//========================================================================
// Window refresh callback function
//========================================================================
static void windowRefreshFun( GLFWwindow window )
{
do_redraw = 1;
}
//========================================================================
// Mouse position callback function
//========================================================================
static void mousePosFun( GLFWwindow window, int x, int y )
{
// Depending on which view was selected, rotate around different axes
switch( active_view )
{
case 1:
rot_x += y - ypos;
rot_z += x - xpos;
do_redraw = 1;
break;
case 3:
rot_x += y - ypos;
rot_y += x - xpos;
do_redraw = 1;
break;
case 4:
rot_y += x - xpos;
rot_z += y - ypos;
do_redraw = 1;
break;
default:
// Do nothing for perspective view, or if no view is selected
break;
}
// Remember mouse position
xpos = x;
ypos = y;
}
//========================================================================
// Mouse button callback function
//========================================================================
static void mouseButtonFun( GLFWwindow window, int button, int action )
{
// Button clicked?
if( ( button == GLFW_MOUSE_BUTTON_LEFT ) && action == GLFW_PRESS )
{
// Detect which of the four views was clicked
active_view = 1;
if( xpos >= width/2 )
{
active_view += 1;
}
if( ypos >= height/2 )
{
active_view += 2;
}
}
// Button released?
else if( button == GLFW_MOUSE_BUTTON_LEFT )
{
// Deselect any previously selected view
active_view = 0;
}
do_redraw = 1;
}
//========================================================================
// main()
//========================================================================
int main( void )
{
GLFWwindow window;
// Initialise GLFW
if( !glfwInit() )
{
fprintf( stderr, "Failed to initialize GLFW\n" );
exit( EXIT_FAILURE );
}
glfwOpenWindowHint(GLFW_DEPTH_BITS, 16);
// Open OpenGL window
window = glfwOpenWindow( 500, 500, GLFW_WINDOWED, "Split view demo" );
if (!window)
{
fprintf( stderr, "Failed to open GLFW window\n" );
glfwTerminate();
exit( EXIT_FAILURE );
}
// Enable vsync
glfwSwapInterval( 1 );
// Enable sticky keys
glfwEnable( window, GLFW_STICKY_KEYS );
// Enable mouse cursor (only needed for fullscreen mode)
glfwEnable( window, GLFW_MOUSE_CURSOR );
// Set callback functions
glfwSetWindowSizeCallback( window, windowSizeFun );
glfwSetWindowRefreshCallback( window, windowRefreshFun );
glfwSetMousePosCallback( window, mousePosFun );
glfwSetMouseButtonCallback( window, mouseButtonFun );
// Main loop
do
{
// Only redraw if we need to
if( do_redraw )
{
// Draw all views
drawAllViews();
// Swap buffers
glfwSwapBuffers();
do_redraw = 0;
}
// Wait for new events
glfwWaitEvents();
} // Check if the ESC key was pressed or the window was closed
while( glfwIsWindow(window) &&
glfwGetKey(window, GLFW_KEY_ESC) != GLFW_PRESS );
// Close OpenGL window and terminate GLFW
glfwTerminate();
exit( EXIT_SUCCESS );
}