1
0
Fork 0
mirror of https://github.com/gwm17/implot.git synced 2024-11-13 22:48:50 -05:00

checkpoint

This commit is contained in:
Evan Pezent 2020-05-16 21:53:59 -05:00
parent 226ae4c10b
commit 2fd9d3f756
3 changed files with 84 additions and 85 deletions

View File

@ -142,7 +142,7 @@ inline void FlipFlag(TSet& set, TFlag flag) {
} }
/// Linearly remaps float x from [x0 x1] to [y0 y1]. /// Linearly remaps float x from [x0 x1] to [y0 y1].
inline double Remap(double x, double x0, double x1, double y0, double y1) { inline float Remap(float x, float x0, float x1, float y0, float y1) {
return y0 + (x - x0) * (y1 - y0) / (x1 - x0); return y0 + (x - x0) * (y1 - y0) / (x1 - x0);
} }
@ -399,7 +399,7 @@ ImVec4 NextColor() {
return col; return col;
} }
inline void FitPoint(const ImVec2& p) { inline void FitPoint(const ImPlotPoint& p) {
ImPlotRange* extents_x = &gp.ExtentsX; ImPlotRange* extents_x = &gp.ExtentsX;
ImPlotRange* extents_y = &gp.ExtentsY[gp.CurrentPlot->CurrentYAxis]; ImPlotRange* extents_y = &gp.ExtentsY[gp.CurrentPlot->CurrentYAxis];
if (!NanOrInf(p.x)) { if (!NanOrInf(p.x)) {
@ -483,10 +483,10 @@ ImVec2 PlotToPixels(const ImPlotPoint& plt, int y_axis) {
struct Plt2PixLinLin { struct Plt2PixLinLin {
Plt2PixLinLin(int y_axis_in) : y_axis(y_axis_in) {} Plt2PixLinLin(int y_axis_in) : y_axis(y_axis_in) {}
ImVec2 operator()(const ImVec2& plt) { return (*this)(plt.x, plt.y); } ImVec2 operator()(const ImPlotPoint& plt) { return (*this)(plt.x, plt.y); }
ImVec2 operator()(ImPlotFloat x, ImPlotFloat y) { ImVec2 operator()(ImPlotFloat x, ImPlotFloat y) {
return ImVec2( gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min), return ImVec2( (float)(gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min)),
gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min) ); (float)(gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min)) );
} }
int y_axis; int y_axis;
@ -495,12 +495,12 @@ struct Plt2PixLinLin {
struct Plt2PixLogLin { struct Plt2PixLogLin {
Plt2PixLogLin(int y_axis_in) : y_axis(y_axis_in) {} Plt2PixLogLin(int y_axis_in) : y_axis(y_axis_in) {}
ImVec2 operator()(const ImVec2& plt) { return (*this)(plt.x, plt.y); } ImVec2 operator()(const ImPlotPoint& plt) { return (*this)(plt.x, plt.y); }
ImVec2 operator()(float x, float y) { ImVec2 operator()(ImPlotFloat x, ImPlotFloat y) {
float t = log10(x / gp.CurrentPlot->XAxis.Range.Min) / gp.LogDenX; ImPlotFloat t = log10(x / gp.CurrentPlot->XAxis.Range.Min) / gp.LogDenX;
x = ImLerp(gp.CurrentPlot->XAxis.Range.Min, gp.CurrentPlot->XAxis.Range.Max, t); x = ImLerp(gp.CurrentPlot->XAxis.Range.Min, gp.CurrentPlot->XAxis.Range.Max, (float)t);
return ImVec2( gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min), return ImVec2( (float)(gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min)),
gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min) ); (float)(gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min)) );
} }
int y_axis; int y_axis;
@ -509,28 +509,27 @@ struct Plt2PixLogLin {
struct Plt2PixLinLog { struct Plt2PixLinLog {
Plt2PixLinLog(int y_axis_in) : y_axis(y_axis_in) {} Plt2PixLinLog(int y_axis_in) : y_axis(y_axis_in) {}
ImVec2 operator()(const ImVec2& plt) { return (*this)(plt.x, plt.y); } ImVec2 operator()(const ImPlotPoint& plt) { return (*this)(plt.x, plt.y); }
ImVec2 operator()(float x, float y) { ImVec2 operator()(ImPlotFloat x, ImPlotFloat y) {
float t = log10(y / gp.CurrentPlot->YAxis[y_axis].Range.Min) / gp.LogDenY[y_axis]; ImPlotFloat t = log10(y / gp.CurrentPlot->YAxis[y_axis].Range.Min) / gp.LogDenY[y_axis];
y = ImLerp(gp.CurrentPlot->YAxis[y_axis].Range.Min, gp.CurrentPlot->YAxis[y_axis].Range.Max, t); y = ImLerp(gp.CurrentPlot->YAxis[y_axis].Range.Min, gp.CurrentPlot->YAxis[y_axis].Range.Max, (float)t);
return ImVec2( gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min), return ImVec2( (float)(gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min)),
gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min) ); (float)(gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min)) );
} }
int y_axis; int y_axis;
}; };
struct Plt2PixLogLog { struct Plt2PixLogLog {
Plt2PixLogLog(int y_axis_in) : y_axis(y_axis_in) {} Plt2PixLogLog(int y_axis_in) : y_axis(y_axis_in) {}
ImVec2 operator()(const ImVec2& plt) { return (*this)(plt.x, plt.y); } ImVec2 operator()(const ImPlotPoint& plt) { return (*this)(plt.x, plt.y); }
ImVec2 operator()(float x, float y) { ImVec2 operator()(ImPlotFloat x, ImPlotFloat y) {
float t = log10(x / gp.CurrentPlot->XAxis.Range.Min) / gp.LogDenX; ImPlotFloat t = log10(x / gp.CurrentPlot->XAxis.Range.Min) / gp.LogDenX;
x = ImLerp(gp.CurrentPlot->XAxis.Range.Min, gp.CurrentPlot->XAxis.Range.Max, t); x = ImLerp(gp.CurrentPlot->XAxis.Range.Min, gp.CurrentPlot->XAxis.Range.Max, (float)t);
t = log10(y / gp.CurrentPlot->YAxis[y_axis].Range.Min) / gp.LogDenY[y_axis]; t = log10(y / gp.CurrentPlot->YAxis[y_axis].Range.Min) / gp.LogDenY[y_axis];
y = ImLerp(gp.CurrentPlot->YAxis[y_axis].Range.Min, gp.CurrentPlot->YAxis[y_axis].Range.Max, t); y = ImLerp(gp.CurrentPlot->YAxis[y_axis].Range.Min, gp.CurrentPlot->YAxis[y_axis].Range.Max, (float)t);
return ImVec2( gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min), return ImVec2( (float)(gp.PixelRange[y_axis].Min.x + gp.Mx * (x - gp.CurrentPlot->XAxis.Range.Min)),
gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min) ); (float)(gp.PixelRange[y_axis].Min.y + gp.My[y_axis] * (y - gp.CurrentPlot->YAxis[y_axis].Range.Min)) );
} }
int y_axis; int y_axis;
@ -1213,14 +1212,14 @@ bool BeginPlot(const char* title, const char* x_label, const char* y_label, cons
if (gp.RenderX) { if (gp.RenderX) {
for (int t = 0; t < gp.XTicks.Size; t++) { for (int t = 0; t < gp.XTicks.Size; t++) {
ImTick *xt = &gp.XTicks[t]; ImTick *xt = &gp.XTicks[t];
xt->PixelPos = PlotToPixels((float)xt->PlotPos, 0, 0).x; xt->PixelPos = PlotToPixels(xt->PlotPos, 0, 0).x;
} }
} }
for (int i = 0; i < MAX_Y_AXES; i++) { for (int i = 0; i < MAX_Y_AXES; i++) {
if (gp.RenderY[i]) { if (gp.RenderY[i]) {
for (int t = 0; t < gp.YTicks[i].Size; t++) { for (int t = 0; t < gp.YTicks[i].Size; t++) {
ImTick *yt = &gp.YTicks[i][t]; ImTick *yt = &gp.YTicks[i][t];
yt->PixelPos = PlotToPixels(0, (float)yt->PlotPos, i).y; yt->PixelPos = PlotToPixels(0, yt->PlotPos, i).y;
} }
} }
} }
@ -1716,12 +1715,12 @@ void EndPlot() {
// MISC API // MISC API
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void SetNextPlotLimits(float x_min, float x_max, float y_min, float y_max, ImGuiCond cond) { void SetNextPlotLimits(ImPlotFloat x_min, ImPlotFloat x_max, ImPlotFloat y_min, ImPlotFloat y_max, ImGuiCond cond) {
SetNextPlotLimitsX(x_min, x_max, cond); SetNextPlotLimitsX(x_min, x_max, cond);
SetNextPlotLimitsY(y_min, y_max, cond); SetNextPlotLimitsY(y_min, y_max, cond);
} }
void SetNextPlotLimitsX(float x_min, float x_max, ImGuiCond cond) { void SetNextPlotLimitsX(ImPlotFloat x_min, ImPlotFloat x_max, ImGuiCond cond) {
IM_ASSERT(cond == 0 || ImIsPowerOfTwo(cond)); // Make sure the user doesn't attempt to combine multiple condition flags. IM_ASSERT(cond == 0 || ImIsPowerOfTwo(cond)); // Make sure the user doesn't attempt to combine multiple condition flags.
gp.NextPlotData.HasXRange = true; gp.NextPlotData.HasXRange = true;
gp.NextPlotData.XRangeCond = cond; gp.NextPlotData.XRangeCond = cond;
@ -1729,7 +1728,7 @@ void SetNextPlotLimitsX(float x_min, float x_max, ImGuiCond cond) {
gp.NextPlotData.X.Max = x_max; gp.NextPlotData.X.Max = x_max;
} }
void SetNextPlotLimitsY(float y_min, float y_max, ImGuiCond cond, int y_axis) { void SetNextPlotLimitsY(ImPlotFloat y_min, ImPlotFloat y_max, ImGuiCond cond, int y_axis) {
IM_ASSERT_USER_ERROR(y_axis >= 0 && y_axis < MAX_Y_AXES, "y_axis Needs to be between 0 and MAX_Y_AXES"); IM_ASSERT_USER_ERROR(y_axis >= 0 && y_axis < MAX_Y_AXES, "y_axis Needs to be between 0 and MAX_Y_AXES");
IM_ASSERT(cond == 0 || ImIsPowerOfTwo(cond)); // Make sure the user doesn't attempt to combine multiple condition flags. IM_ASSERT(cond == 0 || ImIsPowerOfTwo(cond)); // Make sure the user doesn't attempt to combine multiple condition flags.
gp.NextPlotData.HasYRange[y_axis] = true; gp.NextPlotData.HasYRange[y_axis] = true;
@ -2147,45 +2146,48 @@ inline void RenderLineStrip(Transformer transformer, ImDrawList& DrawList, Gette
// DATA GETTERS // DATA GETTERS
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
inline float StrideIndex(const float* data, int idx, int stride) { template <typename T>
return *(const float*)(const void*)((const unsigned char*)data + (size_t)idx * stride); inline T StrideIndex(const T* data, int idx, int stride) {
return *(const T*)(const void*)((const unsigned char*)data + (size_t)idx * stride);
} }
template <typename T>
struct GetterYs { struct GetterYs {
GetterYs(const float* ys, int stride) { Ys = ys; Stride = stride; } GetterYs(const T* ys, int stride) { Ys = ys; Stride = stride; }
const float* Ys; const T* Ys;
int Stride; int Stride;
inline ImVec2 operator()(int idx) { inline ImPlotPoint operator()(int idx) {
return ImVec2((float)idx, StrideIndex(Ys, idx, Stride)); return ImPlotPoint((T)idx, StrideIndex(Ys, idx, Stride));
} }
}; };
template <typename T>
struct Getter2D { struct Getter2D {
Getter2D(const float* xs, const float* ys, int stride) { Xs = xs; Ys = ys; Stride = stride; } Getter2D(const T* xs, const T* ys, int stride) { Xs = xs; Ys = ys; Stride = stride; }
const float* Xs; const T* Xs;
const float* Ys; const T* Ys;
int Stride; int Stride;
inline ImVec2 operator()(int idx) { inline ImPlotPoint operator()(int idx) {
return ImVec2(StrideIndex(Xs, idx, Stride), StrideIndex(Ys, idx, Stride)); return ImPlotPoint(StrideIndex(Xs, idx, Stride), StrideIndex(Ys, idx, Stride));
} }
}; };
struct GetterImVec2 { struct GetterImVec2 {
GetterImVec2(const ImVec2* data) { Data = data; } GetterImVec2(const ImVec2* data) { Data = data; }
inline ImVec2 operator()(int idx) { return Data[idx]; } inline ImPlotPoint operator()(int idx) { return ImPlotPoint(Data[idx].x, Data[idx].y); }
const ImVec2* Data; const ImVec2* Data;
}; };
struct GetterFuncPtrImVec2 { struct GetterFuncPtrImVec2 {
GetterFuncPtrImVec2(ImVec2 (*g)(void* data, int idx), void* d) { getter = g; data = d;} GetterFuncPtrImVec2(ImVec2 (*g)(void* data, int idx), void* d) { getter = g; data = d;}
ImVec2 operator()(int idx) { return getter(data, idx); } inline ImPlotPoint operator()(int idx) { ImVec2 p = getter(data, idx); return ImPlotPoint(p.x,p.y); }
ImVec2 (*getter)(void* data, int idx); ImVec2 (*getter)(void* data, int idx);
void* data; void* data;
}; };
struct GetterFuncPtrImVec4 { struct GetterFuncPtrImVec4 {
GetterFuncPtrImVec4(ImVec4 (*g)(void* data, int idx), void* d) { getter = g; data = d;} GetterFuncPtrImVec4(ImVec4 (*g)(void* data, int idx), void* d) { getter = g; data = d;}
ImVec4 operator()(int idx) { return getter(data, idx); } inline ImVec4 operator()(int idx) { return getter(data, idx); }
ImVec4 (*getter)(void* data, int idx); ImVec4 (*getter)(void* data, int idx);
void* data; void* data;
}; };
@ -2225,7 +2227,7 @@ inline void PlotEx(const char* label_id, Getter getter, int count, int offset)
// find data extents // find data extents
if (gp.FitThisFrame) { if (gp.FitThisFrame) {
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
ImVec2 p = getter(i); ImPlotPoint p = getter(i);
FitPoint(p); FitPoint(p);
} }
} }
@ -2326,16 +2328,18 @@ void PlotScatter(const char* label_id, ImVec2 (*getter)(void* data, int idx), vo
// PLOT BAR // PLOT BAR
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <typename T>
struct GetterBarV { struct GetterBarV {
const float* Ys; float XShift; int Stride; const T* Ys; T XShift; int Stride;
GetterBarV(const float* ys, float xshift, int stride) { Ys = ys; XShift = xshift; Stride = stride; } GetterBarV(const T* ys, T xshift, int stride) { Ys = ys; XShift = xshift; Stride = stride; }
inline ImVec2 operator()(int idx) { return ImVec2((float)idx + XShift, StrideIndex(Ys, idx, Stride)); } inline ImPlotPoint operator()(int idx) { return ImPlotPoint((T)idx + XShift, StrideIndex(Ys, idx, Stride)); }
}; };
template <typename T>
struct GetterBarH { struct GetterBarH {
const float* Xs; float YShift; int Stride; const T* Xs; T YShift; int Stride;
GetterBarH(const float* xs, float yshift, int stride) { Xs = xs; YShift = yshift; Stride = stride; } GetterBarH(const T* xs, T yshift, int stride) { Xs = xs; YShift = yshift; Stride = stride; }
inline ImVec2 operator()(int idx) { return ImVec2(StrideIndex(Xs, idx, Stride), (float)idx + YShift); } inline ImPlotPoint operator()(int idx) { return ImPlotPoint(StrideIndex(Xs, idx, Stride), (T)idx + YShift); }
}; };
@ -2369,15 +2373,15 @@ void PlotBarsEx(const char* label_id, Getter getter, int count, float width, int
// find data extents // find data extents
if (gp.FitThisFrame) { if (gp.FitThisFrame) {
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
ImVec2 p = getter(i); ImPlotPoint p = getter(i);
FitPoint(ImVec2(p.x - half_width, p.y)); FitPoint(ImPlotPoint(p.x - half_width, p.y));
FitPoint(ImVec2(p.x + half_width, 0)); FitPoint(ImPlotPoint(p.x + half_width, 0));
} }
} }
int idx = offset; int idx = offset;
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
ImVec2 p; ImPlotPoint p;
p = getter(idx); p = getter(idx);
idx = (idx + 1) % count; idx = (idx + 1) % count;
if (p.y == 0) if (p.y == 0)
@ -2439,15 +2443,15 @@ void PlotBarsHEx(const char* label_id, Getter getter, int count, float height,
// find data extents // find data extents
if (gp.FitThisFrame) { if (gp.FitThisFrame) {
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
ImVec2 p = getter(i); ImPlotPoint p = getter(i);
FitPoint(ImVec2(0, p.y - half_height)); FitPoint(ImPlotPoint(0, p.y - half_height));
FitPoint(ImVec2(p.x, p.y + half_height)); FitPoint(ImPlotPoint(p.x, p.y + half_height));
} }
} }
int idx = offset; int idx = offset;
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
ImVec2 p; ImPlotPoint p;
p = getter(idx); p = getter(idx);
idx = (idx + 1) % count; idx = (idx + 1) % count;
if (p.x == 0) if (p.x == 0)
@ -2516,8 +2520,8 @@ void PlotErrorBarsEx(const char* label_id, Getter getter, int count, int offset)
if (gp.FitThisFrame) { if (gp.FitThisFrame) {
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
ImVec4 e = getter(i); ImVec4 e = getter(i);
FitPoint(ImVec2(e.x , e.y - e.z)); FitPoint(ImPlotPoint(e.x , e.y - e.z));
FitPoint(ImVec2(e.x , e.y + e.w )); FitPoint(ImPlotPoint(e.x , e.y + e.w ));
} }
} }
@ -2644,8 +2648,8 @@ inline void PlotDigitalEx(const char* label_id, Getter getter, int count, int of
// find data extents // find data extents
if (gp.FitThisFrame) { if (gp.FitThisFrame) {
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
ImVec2 p = getter(i); ImPlotPoint p = getter(i);
FitPoint(ImVec2(p.x, 0)); FitPoint(ImPlotPoint(p.x, 0));
} }
} }
@ -2659,31 +2663,30 @@ inline void PlotDigitalEx(const char* label_id, Getter getter, int count, int of
// render digital signals as "pixel bases" rectangles // render digital signals as "pixel bases" rectangles
if (count > 1 && rend_line) { if (count > 1 && rend_line) {
// //
const float mx = (gp.PixelRange[ax].Max.x - gp.PixelRange[ax].Min.x) / gp.CurrentPlot->XAxis.Range.Size();
const int segments = count - 1; const int segments = count - 1;
int i1 = offset; int i1 = offset;
int pixYMax = 0; int pixYMax = 0;
for (int s = 0; s < segments; ++s) { for (int s = 0; s < segments; ++s) {
const int i2 = (i1 + 1) % count; const int i2 = (i1 + 1) % count;
ImVec2 itemData1 = getter(i1); ImPlotPoint itemData1 = getter(i1);
ImVec2 itemData2 = getter(i2); ImPlotPoint itemData2 = getter(i2);
i1 = i2; i1 = i2;
int pixY_0 = (int)(line_weight); int pixY_0 = (int)(line_weight);
float pixY_1_float = gp.Style.DigitalBitHeight * ImMax(0.0f, itemData1.y); float pixY_1_float = gp.Style.DigitalBitHeight * ImMax(0.0, itemData1.y);
int pixY_1 = (int)(pixY_1_float); //allow only positive values int pixY_1 = (int)(pixY_1_float); //allow only positive values
int pixY_chPosOffset = (int)(ImMax(gp.Style.DigitalBitHeight, pixY_1_float) + gp.Style.DigitalBitGap); int pixY_chPosOffset = (int)(ImMax(gp.Style.DigitalBitHeight, pixY_1_float) + gp.Style.DigitalBitGap);
pixYMax = ImMax(pixYMax, pixY_chPosOffset); pixYMax = ImMax(pixYMax, pixY_chPosOffset);
ImVec2 pMin, pMax; ImVec2 pMin = PlotToPixels(itemData1);
pMin.x = gp.PixelRange[ax].Min.x + mx * (itemData1.x - gp.CurrentPlot->XAxis.Range.Min); ImVec2 pMax = PlotToPixels(itemData2);
pMax.x = gp.PixelRange[ax].Min.x + mx * (itemData2.x - gp.CurrentPlot->XAxis.Range.Min); int pixY_Offset = 20; //20 pixel from bottom due to mouse cursor label
int pixY_Offset = 20;//20 pixel from bottom due to mouse cursor label
pMin.y = (gp.PixelRange[ax].Min.y) + ((-gp.DigitalPlotOffset) - pixY_Offset); pMin.y = (gp.PixelRange[ax].Min.y) + ((-gp.DigitalPlotOffset) - pixY_Offset);
pMax.y = (gp.PixelRange[ax].Min.y) + ((-gp.DigitalPlotOffset) - pixY_0 - pixY_1 - pixY_Offset); pMax.y = (gp.PixelRange[ax].Min.y) + ((-gp.DigitalPlotOffset) - pixY_0 - pixY_1 - pixY_Offset);
//plot only one rectangle for same digital state //plot only one rectangle for same digital state
while (((s+2) < segments) && (itemData1.y == itemData2.y)) { while (((s+2) < segments) && (itemData1.y == itemData2.y)) {
const int i3 = (i1 + 1) % count; const int i3 = (i1 + 1) % count;
itemData2 = getter(i3); itemData2 = getter(i3);
pMax.x = gp.PixelRange[ax].Min.x + mx * (itemData2.x - gp.CurrentPlot->XAxis.Range.Min); pMax.x = PlotToPixels(itemData2).x;
i1 = i3; i1 = i3;
s++; s++;
} }

View File

@ -25,11 +25,7 @@
#pragma once #pragma once
#include "imgui.h" #include "imgui.h"
// This can be defined in your imconfig.h to change the desired plot precision. // The desired plot precision (float or double)
// #ifndef ImPlotFloat
// #define ImPlotFloat double
// #endif
typedef double ImPlotFloat; typedef double ImPlotFloat;
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -260,11 +256,11 @@ void PopStyleVar(int count = 1);
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
/// Set the axes range limits of the next plot. Call right before BeginPlot(). If ImGuiCond_Always is used, the axes limits will be locked. /// Set the axes range limits of the next plot. Call right before BeginPlot(). If ImGuiCond_Always is used, the axes limits will be locked.
void SetNextPlotLimits(float x_min, float x_max, float y_min, float y_max, ImGuiCond cond = ImGuiCond_Once); void SetNextPlotLimits(ImPlotFloat x_min, ImPlotFloat x_max, ImPlotFloat y_min, ImPlotFloat y_max, ImGuiCond cond = ImGuiCond_Once);
/// Set the X axis range limits of the next plot. Call right before BeginPlot(). If ImGuiCond_Always is used, the axis limits will be locked. /// Set the X axis range limits of the next plot. Call right before BeginPlot(). If ImGuiCond_Always is used, the axis limits will be locked.
void SetNextPlotLimitsX(float x_min, float x_max, ImGuiCond cond = ImGuiCond_Once); void SetNextPlotLimitsX(ImPlotFloat x_min, ImPlotFloat x_max, ImGuiCond cond = ImGuiCond_Once);
/// Set the Y axis range limits of the next plot. Call right before BeginPlot(). If ImGuiCond_Always is used, the axis limits will be locked. /// Set the Y axis range limits of the next plot. Call right before BeginPlot(). If ImGuiCond_Always is used, the axis limits will be locked.
void SetNextPlotLimitsY(float y_min, float y_max, ImGuiCond cond = ImGuiCond_Once, int y_axis = 0); void SetNextPlotLimitsY(ImPlotFloat y_min, ImPlotFloat y_max, ImGuiCond cond = ImGuiCond_Once, int y_axis = 0);
/// Select which Y axis will be used for subsequent plot elements. The default is '0', or the first Y axis. /// Select which Y axis will be used for subsequent plot elements. The default is '0', or the first Y axis.
void SetPlotYAxis(int y_axis); void SetPlotYAxis(int y_axis);

View File

@ -460,7 +460,7 @@ void ShowDemoWindow(bool* p_open) {
if (ImPlot::IsPlotHovered() && ImGui::IsMouseClicked(0) && ImGui::GetIO().KeyCtrl) { if (ImPlot::IsPlotHovered() && ImGui::IsMouseClicked(0) && ImGui::GetIO().KeyCtrl) {
ImPlotPoint pt = ImPlot::GetPlotMousePos(); ImPlotPoint pt = ImPlot::GetPlotMousePos();
data.push_back(ImVec2(pt.x, pt.y)); data.push_back(ImVec2((float)pt.x, (float)pt.y));
} }
ImPlot::PushStyleVar(ImPlotStyleVar_Marker, ImPlotMarker_Diamond); ImPlot::PushStyleVar(ImPlotStyleVar_Marker, ImPlotMarker_Diamond);
if (data.size() > 0) if (data.size() > 0)
@ -719,8 +719,8 @@ void ShowDemoWindow(bool* p_open) {
if (ImGui::CollapsingHeader("Offset Data")) { if (ImGui::CollapsingHeader("Offset Data")) {
float xs[50], ys[50]; float xs[50], ys[50];
for (int i = 0; i < 50; ++i) { for (int i = 0; i < 50; ++i) {
xs[i] = 0.5 + 0.4 * cos(i/50.f * 6.28); xs[i] = 0.5f + 0.4f * cos(i/50.f * 6.28f);
ys[i] = 0.5 + 0.4 * sin(i/50.f * 6.28); ys[i] = 0.5f + 0.4f * sin(i/50.f * 6.28f);
} }
static int offset = 0; static int offset = 0;
ImGui::SliderInt("Offset", &offset, -100, 100); ImGui::SliderInt("Offset", &offset, -100, 100);