#include "../implot.h" #include "../implot_internal.h" #include "implot_backend.h" #include "implot_impl_opengl3.h" #if defined(IMGUI_IMPL_OPENGL_ES2) #include // About Desktop OpenGL function loaders: // Modern desktop OpenGL doesn't have a standard portable header file to load OpenGL function pointers. // Helper libraries are often used for this purpose! Here we are supporting a few common ones (gl3w, glew, glad). // You may use another loader/header of your choice (glext, glLoadGen, etc.), or chose to manually implement your own. #elif defined(IMGUI_IMPL_OPENGL_LOADER_GL3W) #include // Initialize with gl3wInit() #elif defined(IMGUI_IMPL_OPENGL_LOADER_GLEW) #include // Initialize with glewInit() #elif defined(IMGUI_IMPL_OPENGL_LOADER_GLAD) #include // Initialize with gladLoadGL() #elif defined(IMGUI_IMPL_OPENGL_LOADER_GLAD2) #include // Initialize with gladLoadGL(...) or gladLoaderLoadGL() #elif defined(IMGUI_IMPL_OPENGL_LOADER_GLBINDING2) #define GLFW_INCLUDE_NONE // GLFW including OpenGL headers causes ambiguity or multiple definition errors. #include // Initialize with glbinding::Binding::initialize() #include using namespace gl; #elif defined(IMGUI_IMPL_OPENGL_LOADER_GLBINDING3) #define GLFW_INCLUDE_NONE // GLFW including OpenGL headers causes ambiguity or multiple definition errors. #include // Initialize with glbinding::initialize() #include using namespace gl; #else #include IMGUI_IMPL_OPENGL_LOADER_CUSTOM #endif namespace ImPlot { namespace Backend { struct HeatmapShader { GLuint ID = 0; ///< Shader ID for the heatmap shader GLuint AttribLocationProjection = 0; ///< Attribute location for the projection matrix uniform GLuint AttribLocationMinValue = 0; ///< Attribute location for the minimum value uniform GLuint AttribLocationMaxValue = 0; ///< Attribute location for the maximum value uniform GLuint AttribLocationAxisLog = 0; ///< Attribute location for the logarithmic axes uniform GLuint AttribLocationMinBounds = 0; ///< Attribute location for the minimum bounds uniform GLuint AttribLocationMaxBounds = 0; ///< Attribute location for the maximum bounds uniform }; struct HeatmapData { ImGuiID ID; HeatmapShader* ShaderProgram; ///< Shader to be used by this heatmap (either ShaderInt or ShaderFloat) GLuint HeatmapTexID; ///< Texture ID of the heatmap 2D texture GLuint ColormapTexID; ///< Texture ID of the colormap 1D texture ImPlotPoint MinBounds; ///< Minimum bounds of the heatmap ImPlotPoint MaxBounds; ///< Maximum bounds of the heatmap float MinValue; ///< Minimum value of the colormap float MaxValue; ///< Maximum value of the colormap bool AxisLogX; ///< Whether the X axis is logarithmic or not bool AxisLogY; ///< Whether the Y axis is logarithmic or not HeatmapData() { glGenTextures(1, &HeatmapTexID); glBindTexture(GL_TEXTURE_2D, HeatmapTexID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); } }; struct ContextData { HeatmapShader ShaderInt; ///< Shader for integer heatmaps HeatmapShader ShaderFloat; ///< Shader for floating-point heatmaps GLuint AttribLocationImGuiProjection = 0; ///< Attribute location for the projection matrix uniform (ImGui default shader) GLuint ImGuiShader = 0; ///< Shader ID of ImGui's default shader ImPool Heatmaps; ///< Array of heatmap data ImVector ColormapIDs; ///< Texture IDs of the colormap textures ImVector TempFloat; ///< Temporary data ImVector TempS32; ///< Temporary data ImVector TempU32; ///< Temporary data }; void* CreateContext() { return IM_NEW(ContextData)(); } void DestroyContext() { ContextData* Context = ((ContextData*)GImPlot->backendCtx); // free OpenGL resources for(int i = 0; i < Context->Heatmaps.GetBufSize(); ++i) glDeleteTextures(1, &Context->Heatmaps.GetByIndex(i)->HeatmapTexID); for(GLuint texID : Context->ColormapIDs) glDeleteTextures(1, &texID); glDeleteProgram(Context->ShaderInt.ID); glDeleteProgram(Context->ShaderFloat.ID); Context->Heatmaps.Clear(); IM_DELETE(Context); } #define HEATMAP_VERTEX_SHADER_CODE \ "#version 330 core\n" \ "precision mediump float;\n" \ "layout (location = %d) in vec2 Position;\n" \ "layout (location = %d) in vec2 UV;\n" \ "\n" \ "uniform mat4 ProjMtx;\n" \ "out vec2 Frag_UV;\n" \ "\n" \ "void main()\n" \ "{\n" \ " Frag_UV = UV;\n" \ " gl_Position = ProjMtx * vec4(Position.xy, 0.0f, 1.0f);\n" \ "}\n" #define HEATMAP_FRAGMENT_SHADER_CODE \ "#version 330 core\n" \ "precision mediump float;\n" \ "\n" \ "in vec2 Frag_UV;\n" \ "out vec4 Out_Color;\n" \ "\n" \ "uniform sampler1D colormap;\n" \ "uniform %csampler2D heatmap;\n" \ "uniform float min_val;\n" \ "uniform float max_val;\n" \ "\n" \ "uniform vec2 bounds_min;\n" \ "uniform vec2 bounds_max;\n" \ "uniform bvec2 ax_log;\n" \ "\n" \ "float log_den(float x, float min_rng, float max_rng)\n" \ "{\n" \ " float minrl = log(min_rng);\n" \ " float maxrl = log(max_rng);\n" \ "\n" \ " return (exp((maxrl - minrl) * x + minrl) - min_rng) / (max_rng - min_rng);" \ "}\n" \ "\n" \ "void main()\n" \ "{\n" \ " float min_tex_offs = 0.5 / float(textureSize(colormap, 0));\n" \ " float uv_x = ax_log.x ? log_den(Frag_UV.x, bounds_min.x, bounds_max.x) : Frag_UV.x;\n" \ " float uv_y = ax_log.y ? log_den(Frag_UV.y, bounds_min.y, bounds_max.y) : Frag_UV.y;\n" \ "\n" \ " float value = float(texture(heatmap, vec2(uv_x, uv_y)).r);\n" \ " float offset = (value - min_val) / (max_val - min_val);\n" \ " offset = mix(min_tex_offs, 1.0 - min_tex_offs, clamp(offset, 0.0f, 1.0f));\n" \ " Out_Color = texture(colormap, offset);\n" \ "}\n" static void CompileShader(HeatmapShader& ShaderProgram, GLchar* VertexShaderCode, GLchar* FragmentShaderCode) { GLuint VertexShader = glCreateShader(GL_VERTEX_SHADER); glShaderSource(VertexShader, 1, &VertexShaderCode, nullptr); glCompileShader(VertexShader); GLuint FragmentShader = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(FragmentShader, 1, &FragmentShaderCode, nullptr); glCompileShader(FragmentShader); ShaderProgram.ID = glCreateProgram(); glAttachShader(ShaderProgram.ID, VertexShader); glAttachShader(ShaderProgram.ID, FragmentShader); glLinkProgram(ShaderProgram.ID); glDetachShader(ShaderProgram.ID, VertexShader); glDetachShader(ShaderProgram.ID, FragmentShader); glDeleteShader(VertexShader); glDeleteShader(FragmentShader); ShaderProgram.AttribLocationProjection = glGetUniformLocation(ShaderProgram.ID, "ProjMtx"); ShaderProgram.AttribLocationMinValue = glGetUniformLocation(ShaderProgram.ID, "min_val"); ShaderProgram.AttribLocationMaxValue = glGetUniformLocation(ShaderProgram.ID, "max_val"); ShaderProgram.AttribLocationMinBounds = glGetUniformLocation(ShaderProgram.ID, "bounds_min"); ShaderProgram.AttribLocationMaxBounds = glGetUniformLocation(ShaderProgram.ID, "bounds_max"); ShaderProgram.AttribLocationAxisLog = glGetUniformLocation(ShaderProgram.ID, "ax_log"); glUseProgram(ShaderProgram.ID); glUniform1i(glGetUniformLocation(ShaderProgram.ID, "heatmap"), 0); // Set texture slot of heatmap texture glUniform1i(glGetUniformLocation(ShaderProgram.ID, "colormap"), 1); // Set texture slot of colormap texture } static void CreateHeatmapShader(const ImDrawList*, const ImDrawCmd*) { ContextData& Context = *((ContextData*)GImPlot->backendCtx); glGetIntegerv(GL_CURRENT_PROGRAM, (GLint*)&Context.ImGuiShader); Context.AttribLocationImGuiProjection = glGetUniformLocation(Context.ImGuiShader, "ProjMtx"); GLuint AttribLocationVtxPos = (GLuint)glGetAttribLocation(Context.ImGuiShader, "Position"); GLuint AttribLocationVtxUV = (GLuint)glGetAttribLocation(Context.ImGuiShader, "UV"); GLchar* VertexShaderCode = new GLchar[1000]; GLchar* FragmentShaderCode = new GLchar[1000]; snprintf(VertexShaderCode, 1000, HEATMAP_VERTEX_SHADER_CODE, AttribLocationVtxPos, AttribLocationVtxUV); snprintf(FragmentShaderCode, 1000, HEATMAP_FRAGMENT_SHADER_CODE, ' '); CompileShader(Context.ShaderFloat, VertexShaderCode, FragmentShaderCode); snprintf(VertexShaderCode, 1000, HEATMAP_VERTEX_SHADER_CODE, AttribLocationVtxPos, AttribLocationVtxUV); snprintf(FragmentShaderCode, 1000, HEATMAP_FRAGMENT_SHADER_CODE, 'i'); CompileShader(Context.ShaderInt, VertexShaderCode, FragmentShaderCode); glUseProgram(0); delete[] VertexShaderCode; delete[] FragmentShaderCode; } static void RenderCallback(const ImDrawList*, const ImDrawCmd* cmd) { ContextData& Context = *((ContextData*)GImPlot->backendCtx); int itemID = (int)(intptr_t)cmd->UserCallbackData; HeatmapData& data = *Context.Heatmaps.GetByKey(itemID); // Get projection matrix of current shader float OrthoProjection[4][4]; glGetUniformfv(Context.ImGuiShader, Context.AttribLocationImGuiProjection, &OrthoProjection[0][0]); // Enable our shader glUseProgram(data.ShaderProgram->ID); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, data.HeatmapTexID); // Set texture ID of data glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_1D, data.ColormapTexID); // Set texture ID of colormap glUniformMatrix4fv(data.ShaderProgram->AttribLocationProjection, 1, GL_FALSE, &OrthoProjection[0][0]); glUniform1f(data.ShaderProgram->AttribLocationMinValue, data.MinValue); // Set minimum range glUniform1f(data.ShaderProgram->AttribLocationMaxValue, data.MaxValue); // Set maximum range glUniform2i(data.ShaderProgram->AttribLocationAxisLog, data.AxisLogX, data.AxisLogY); // Logarithmic axis glUniform2f(data.ShaderProgram->AttribLocationMinBounds, (float)data.MinBounds.x, (float)data.MinBounds.y); // Set minimum bounds glUniform2f(data.ShaderProgram->AttribLocationMaxBounds, (float)data.MaxBounds.x, (float)data.MaxBounds.y); // Set maximum bounds } static void ResetState(const ImDrawList*, const ImDrawCmd*) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, 0); ContextData& Context = *((ContextData*)GImPlot->backendCtx); glUseProgram(Context.ImGuiShader); } static void SetTextureData(GLuint textureID, const void* data, GLsizei rows, GLsizei cols, GLint internalFormat, GLenum format, GLenum type) { glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, cols, rows, 0, format, type, data); } void AddColormap(const ImU32* keys, int count, bool qual) { GLuint textureID; glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_1D, textureID); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, count, 0, GL_RGBA, GL_UNSIGNED_BYTE, keys); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, qual ? GL_NEAREST : GL_LINEAR); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, qual ? GL_NEAREST : GL_LINEAR); glBindTexture(GL_TEXTURE_1D, 0); ContextData& Context = *((ContextData*)GImPlot->backendCtx); Context.ColormapIDs.push_back(textureID); } void SetHeatmapData(GLuint textureID, const double* values, int rows, int cols) { ContextData& Context = *((ContextData*)GImPlot->backendCtx); Context.TempFloat.resize(rows * cols); for(int i = 0; i < rows*cols; i++) Context.TempFloat[i] = (float)values[i]; SetTextureData(textureID, Context.TempFloat.Data, rows, cols, GL_R32F, GL_RED, GL_FLOAT); } void SetHeatmapData(GLuint textureID, const ImS64* values, int rows, int cols) { ContextData& Context = *((ContextData*)GImPlot->backendCtx); Context.TempS32.resize(rows * cols); for(int i = 0; i < rows*cols; i++) Context.TempS32[i] = (ImS32)values[i]; SetTextureData(textureID, Context.TempS32.Data, rows, cols, GL_R32I, GL_RED_INTEGER, GL_INT); } void SetHeatmapData(GLuint textureID, const ImU64* values, int rows, int cols) { ContextData& Context = *((ContextData*)GImPlot->backendCtx); Context.TempU32.resize(rows * cols); for(int i = 0; i < rows*cols; i++) Context.TempU32[i] = (ImU32)values[i]; SetTextureData(textureID, Context.TempU32.Data, rows, cols, GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT); } void RenderHeatmap(int itemID, const void* values, ImGuiDataType data_type, int rows, int cols, float scale_min, float scale_max, const ImVec2& coords_min, const ImVec2& coords_max, const ImPlotPoint& bounds_min, const ImPlotPoint& bounds_max, ImPlotScale scale, bool reverse_y, ImPlotColormap cmap, ImDrawList& DrawList) { ContextData& Context = *((ContextData*)GImPlot->backendCtx); HeatmapData& data = *Context.Heatmaps.GetOrAddByKey(itemID); data.ID = itemID; data.ColormapTexID = Context.ColormapIDs[cmap]; data.MinValue = scale_min; data.MaxValue = scale_max; data.AxisLogX = scale == ImPlotScale_LogLin || scale == ImPlotScale_LogLog; data.AxisLogY = scale == ImPlotScale_LinLog || scale == ImPlotScale_LogLog; data.MinBounds = bounds_min; data.MaxBounds = bounds_max; data.ShaderProgram = (data_type == ImGuiDataType_Float || data_type == ImGuiDataType_Double ? &Context.ShaderFloat : &Context.ShaderInt); switch(data_type) { case ImGuiDataType_S8: SetTextureData(data.HeatmapTexID, (const ImS8*) values, rows, cols, GL_R8I, GL_RED_INTEGER, GL_BYTE ); break; case ImGuiDataType_U8: SetTextureData(data.HeatmapTexID, (const ImU8*) values, rows, cols, GL_R8UI, GL_RED_INTEGER, GL_UNSIGNED_BYTE ); break; case ImGuiDataType_S16: SetTextureData(data.HeatmapTexID, (const ImS16*)values, rows, cols, GL_R16I, GL_RED_INTEGER, GL_SHORT ); break; case ImGuiDataType_U16: SetTextureData(data.HeatmapTexID, (const ImU16*)values, rows, cols, GL_R16UI, GL_RED_INTEGER, GL_UNSIGNED_SHORT); break; case ImGuiDataType_S32: SetTextureData(data.HeatmapTexID, (const ImS32*)values, rows, cols, GL_R32I, GL_RED_INTEGER, GL_INT ); break; case ImGuiDataType_U32: SetTextureData(data.HeatmapTexID, (const ImU32*)values, rows, cols, GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT ); break; case ImGuiDataType_S64: SetHeatmapData(data.HeatmapTexID, (const ImS64*)values, rows, cols); break; case ImGuiDataType_U64: SetHeatmapData(data.HeatmapTexID, (const ImU64*)values, rows, cols); break; case ImGuiDataType_Float: SetTextureData(data.HeatmapTexID, (const float*)values, rows, cols, GL_R32F, GL_RED, GL_FLOAT); break; case ImGuiDataType_Double: SetHeatmapData(data.HeatmapTexID, (double*)values, rows, cols); break; }; if(Context.ShaderInt.ID == 0 || Context.ShaderFloat.ID == 0) DrawList.AddCallback(CreateHeatmapShader, nullptr); DrawList.AddCallback(RenderCallback, (void*)(intptr_t)itemID); DrawList.PrimReserve(6, 4); DrawList.PrimRectUV(coords_min, coords_max, ImVec2(0.0f, reverse_y ? 1.0f : 0.0f), ImVec2(1.0f, reverse_y ? 0.0f : 1.0f), 0); DrawList.AddCallback(ResetState, nullptr); } void BustPlotCache() { BustItemCache(); } void BustItemCache() { ContextData* Context = ((ContextData*)GImPlot->backendCtx); for(int i = 0; i < Context->Heatmaps.GetBufSize(); ++i) glDeleteTextures(1, &Context->Heatmaps.GetByIndex(i)->HeatmapTexID); Context->Heatmaps.Clear(); } void ShowBackendMetrics() { ContextData* Context = ((ContextData*)GImPlot->backendCtx); // heatmaps int n_heatmaps = Context->Heatmaps.GetBufSize(); if (ImGui::TreeNode("Heatmaps","Heatmaps (%d)",n_heatmaps)) { for (int i = 0; i < n_heatmaps; ++i) { HeatmapData& data = *Context->Heatmaps.GetByIndex(i); ImGui::PushID(i); if (ImGui::TreeNode("Item","Item [0x%08X]", data.ID)) { ImGui::BulletText("HeatmapTexID: %u", data.HeatmapTexID); ImGui::BulletText("ColormapTexID: %u", data.ColormapTexID); ImGui::TreePop(); } ImGui::PopID(); } ImGui::TreePop(); } } } // namespace Backend } // namespace ImPlot