1
0
Fork 0
mirror of https://github.com/gwm17/implot.git synced 2024-11-26 12:18:52 -05:00
implot/implot_internal.h
2020-09-12 11:32:44 -05:00

873 lines
34 KiB
C++

// MIT License
// Copyright (c) 2020 Evan Pezent
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// ImPlot v0.8 WIP
// You may use this file to debug, understand or extend ImPlot features but we
// don't provide any guarantee of forward compatibility!
//-----------------------------------------------------------------------------
// [SECTION] Header Mess
//-----------------------------------------------------------------------------
#pragma once
#ifndef IMGUI_DEFINE_MATH_OPERATORS
#define IMGUI_DEFINE_MATH_OPERATORS
#endif
#include <time.h>
#include "imgui_internal.h"
#ifndef IMPLOT_VERSION
#error Must include implot.h before implot_internal.h
#endif
//-----------------------------------------------------------------------------
// [SECTION] Forward Declarations
//-----------------------------------------------------------------------------
struct ImPlotTick;
struct ImPlotAxis;
struct ImPlotAxisState;
struct ImPlotAxisColor;
struct ImPlotItem;
struct ImPlotState;
struct ImPlotNextPlotData;
//-----------------------------------------------------------------------------
// [SECTION] Context Pointer
//-----------------------------------------------------------------------------
extern IMPLOT_API ImPlotContext* GImPlot; // Current implicit context pointer
//-----------------------------------------------------------------------------
// [SECTION] Macros and Constants
//-----------------------------------------------------------------------------
// Constants can be changed unless stated otherwise. We may move some of these
// to ImPlotStyleVar_ over time.
// Default plot frame width when requested width is auto (i.e. 0). This is not the plot area width!
#define IMPLOT_DEFAULT_W 400
// Default plot frame height when requested height is auto (i.e. 0). This is not the plot area height!
#define IMPLOT_DEFAULT_H 300
// The maximum number of supported y-axes (DO NOT CHANGE THIS)
#define IMPLOT_Y_AXES 3
// The number of times to subdivided grid divisions (best if a multiple of 1, 2, and 5)
#define IMPLOT_SUB_DIV 10
// Zoom rate for scroll (e.g. 0.1f = 10% plot range every scroll click)
#define IMPLOT_ZOOM_RATE 0.1f
// Maximum allowable timestamp value 01/01/3000 @ 12:00am (UTC)
#define IMPLOT_MIN_TIME 0
// Maximum allowable timestamp value 01/01/3000 @ 12:00am (UTC)
#define IMPLOT_MAX_TIME 32503680000
//-----------------------------------------------------------------------------
// [SECTION] Generic Helpers
//-----------------------------------------------------------------------------
// Computes the common (base-10) logarithm
static inline float ImLog10(float x) { return log10f(x); }
static inline double ImLog10(double x) { return log10(x); }
// Returns true if a flag is set
template <typename TSet, typename TFlag>
inline bool ImHasFlag(TSet set, TFlag flag) { return (set & flag) == flag; }
// Flips a flag in a flagset
template <typename TSet, typename TFlag>
inline void ImFlipFlag(TSet& set, TFlag flag) { ImHasFlag(set, flag) ? set &= ~flag : set |= flag; }
// Linearly remaps x from [x0 x1] to [y0 y1].
template <typename T>
inline T ImRemap(T x, T x0, T x1, T y0, T y1) { return y0 + (x - x0) * (y1 - y0) / (x1 - x0); }
// Returns always positive modulo (assumes r != 0)
inline int ImPosMod(int l, int r) { return (l % r + r) % r; }
// Returns true if val is NAN or INFINITY
inline bool ImNanOrInf(double val) { return val == HUGE_VAL || val == -HUGE_VAL || isnan(val); }
// Turns NANs to 0s
inline double ImConstrainNan(double val) { return isnan(val) ? 0 : val; }
// Turns infinity to floating point maximums
inline double ImConstrainInf(double val) { return val == HUGE_VAL ? DBL_MAX : val == -HUGE_VAL ? - DBL_MAX : val; }
// Turns numbers less than or equal to 0 to 0.001 (sort of arbitrary, is there a better way?)
inline double ImConstrainLog(double val) { return val <= 0 ? 0.001f : val; }
// Turns numbers less than 0 to zero
inline double ImConstrainTime(double val) { return val < IMPLOT_MIN_TIME ? IMPLOT_MIN_TIME : (val > IMPLOT_MAX_TIME ? IMPLOT_MAX_TIME : val); }
// Offset calculator helper
template <int Count>
struct ImOffsetCalculator {
ImOffsetCalculator(const int* sizes) {
Offsets[0] = 0;
for (int i = 1; i < Count; ++i)
Offsets[i] = Offsets[i-1] + sizes[i-1];
}
int Offsets[Count];
};
// Character buffer writer helper
struct ImBufferWriter
{
char* Buffer;
int Size;
int Pos;
ImBufferWriter(char* buffer, int size) {
Buffer = buffer;
Size = size;
Pos = 0;
}
void Write(const char* fmt, ...) IM_FMTARGS(2) {
va_list argp;
va_start(argp, fmt);
const int written = ::vsnprintf(&Buffer[Pos], Size - Pos - 1, fmt, argp);
if (written > 0)
Pos += ImMin(written, Size-Pos-1);
va_end(argp);
}
};
// Fixed size point array
template <int N>
struct ImPlotPointArray {
inline ImPlotPoint& operator[](int i) { return Data[i]; }
inline const ImPlotPoint& operator[](int i) const { return Data[i]; }
inline int Size() { return N; }
ImPlotPoint Data[N];
};
//-----------------------------------------------------------------------------
// [SECTION] ImPlot Enums
//-----------------------------------------------------------------------------
typedef int ImPlotScale; // -> enum ImPlotScale_
typedef int ImPlotTimeUnit; // -> enum ImPlotTimeUnit_
typedef int ImPlotTimeFmt; // -> enum ImPlotTimeFmt_
// XY axes scaling combinations
enum ImPlotScale_ {
ImPlotScale_LinLin, // linear x, linear y
ImPlotScale_LogLin, // log x, linear y
ImPlotScale_LinLog, // linear x, log y
ImPlotScale_LogLog // log x, log y
};
enum ImPlotTimeUnit_ {
ImPlotTimeUnit_Us, // microsecond
ImPlotTimeUnit_Ms, // millisecond
ImPlotTimeUnit_S, // second
ImPlotTimeUnit_Min, // minute
ImPlotTimeUnit_Hr, // hour
ImPlotTimeUnit_Day, // day
ImPlotTimeUnit_Mo, // month
ImPlotTimeUnit_Yr, // year
ImPlotTimeUnit_COUNT
};
enum ImPlotTimeFmt_ {
ImPlotTimeFmt_Us, // .428 552
ImPlotTimeFmt_SUs, // :29.428 552
ImPlotTimeFmt_SMs, // :29.428
ImPlotTimeFmt_S, // :29
ImPlotTimeFmt_HrMinS, // 7:21:29pm (19:21:29)
ImPlotTimeFmt_HrMin, // 7:21pm (19:21)
ImPlotTimeFmt_Hr, // 7pm (19:00)
ImPlotTimeFmt_DayMo, // 10/3
ImPlotTimeFmt_DayMoHr, // 10/3 7pm (10/3 19:00)
ImPlotTimeFmt_DayMoHrMin, // 10/3 7:21pm (10/3 19:21)
ImPlotTimeFmt_DayMoYr, // 10/3/91
ImPlotTimeFmt_DayMoYrHrMin, // 10/3/91 7:21pm (10/3/91 19:21)
ImPlotTimeFmt_DayMoYrHrMinS, // 10/3/91 7:21:29pm (10/3/91 19:21:29)
ImPlotTimeFmt_DayMoYrHrMinSUs, // 10/3/1991 7:21:29.123456pm (10/3/1991 19:21:29.123456)
ImPlotTimeFmt_MoYr, // Oct 1991
ImPlotTimeFmt_Mo, // Oct
ImPlotTimeFmt_Yr // 1991
};
//-----------------------------------------------------------------------------
// [SECTION] ImPlot Structs
//-----------------------------------------------------------------------------
/// Two part timestamp struct.
struct ImPlotTime {
time_t S; // second part
int Us; // microsecond part
ImPlotTime() { S = 0; Us = 0; }
ImPlotTime(time_t s, int us = 0) { S = s + us / 1000000; Us = us % 1000000; }
void RollOver() { S = S + Us / 1000000; Us = Us % 1000000; }
double ToDouble() const { return (double)S + (double)Us / 1000000.0; }
static ImPlotTime FromDouble(double t) { return ImPlotTime((time_t)t, (int)(t * 1000000 - floor(t) * 1000000)); }
};
static inline ImPlotTime operator+(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return ImPlotTime(lhs.S + rhs.S, lhs.Us + rhs.Us); }
static inline ImPlotTime operator-(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return ImPlotTime(lhs.S - rhs.S, lhs.Us - rhs.Us); }
static inline bool operator==(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs.S == rhs.S && lhs.Us == rhs.Us; }
static inline bool operator<(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs.S == rhs.S ? lhs.Us < rhs.Us : lhs.S < rhs.S; }
static inline bool operator>(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return rhs < lhs; }
static inline bool operator<=(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs < rhs || lhs == rhs; }
static inline bool operator>=(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs > rhs || lhs == rhs; }
// Storage for colormap modifiers
struct ImPlotColormapMod {
ImPlotColormapMod(const ImVec4* colormap, int colormap_size) {
Colormap = colormap;
ColormapSize = colormap_size;
}
const ImVec4* Colormap;
int ColormapSize;
};
// ImPlotPoint with positive/negative error values
struct ImPlotPointError
{
double X, Y, Neg, Pos;
ImPlotPointError(double x, double y, double neg, double pos) {
X = x; Y = y; Neg = neg; Pos = pos;
}
};
// Tick mark info
struct ImPlotTick
{
double PlotPos;
float PixelPos;
ImVec2 LabelSize;
int BufferOffset;
bool Major;
bool ShowLabel;
int Level;
ImPlotTick(double value, bool major, bool show_label) {
PlotPos = value;
Major = major;
ShowLabel = show_label;
BufferOffset = -1;
Level = 0;
}
};
// Collection of ticks
struct ImPlotTickCollection {
ImVector<ImPlotTick> Ticks;
ImGuiTextBuffer Labels;
float TotalWidth;
float TotalHeight;
float MaxWidth;
float MaxHeight;
int Size;
void AddTick(const ImPlotTick& tick) {
if (tick.ShowLabel) {
TotalWidth += tick.ShowLabel ? tick.LabelSize.x : 0;
TotalHeight += tick.ShowLabel ? tick.LabelSize.y : 0;
MaxWidth = tick.LabelSize.x > MaxWidth ? tick.LabelSize.x : MaxWidth;
MaxHeight = tick.LabelSize.y > MaxHeight ? tick.LabelSize.y : MaxHeight;
}
Ticks.push_back(tick);
Size++;
}
void AddTick(double value, bool major, bool show_label, void (*labeler)(ImPlotTick& tick, ImGuiTextBuffer& buf)) {
ImPlotTick tick(value, major, show_label);
if (labeler)
labeler(tick, Labels);
AddTick(tick);
}
const char* GetLabel(int idx) {
return Labels.Buf.Data + Ticks[idx].BufferOffset;
}
void Reset() {
Ticks.shrink(0);
Labels.Buf.shrink(0);
TotalWidth = TotalHeight = MaxWidth = MaxHeight = 0;
Size = 0;
}
};
// Axis state information that must persist after EndPlot
struct ImPlotAxis
{
ImPlotAxisFlags Flags;
ImPlotAxisFlags PreviousFlags;
ImPlotRange Range;
bool Dragging;
bool HoveredExt;
bool HoveredTot;
double* LinkedMin;
double* LinkedMax;
ImPlotTime PickerTimeMin, PickerTimeMax;
int PickerLevel;
ImPlotAxis() {
Flags = PreviousFlags = ImPlotAxisFlags_None;
Range.Min = 0;
Range.Max = 1;
Dragging = false;
HoveredExt = false;
HoveredTot = false;
LinkedMin = LinkedMax = NULL;
PickerLevel = 0;
}
bool SetMin(double _min) {
_min = ImConstrainNan(ImConstrainInf(_min));
if (ImHasFlag(Flags, ImPlotAxisFlags_LogScale))
_min = ImConstrainLog(_min);
if (ImHasFlag(Flags, ImPlotAxisFlags_Time))
_min = ImConstrainTime(_min);
if (_min >= Range.Max)
return false;
Range.Min = _min;
PickerTimeMin = ImPlotTime::FromDouble(Range.Min);
return true;
};
bool SetMax(double _max) {
_max = ImConstrainNan(ImConstrainInf(_max));
if (ImHasFlag(Flags, ImPlotAxisFlags_LogScale))
_max = ImConstrainLog(_max);
if (ImHasFlag(Flags, ImPlotAxisFlags_Time))
_max = ImConstrainTime(_max);
if (_max <= Range.Min)
return false;
Range.Max = _max;
PickerTimeMax = ImPlotTime::FromDouble(Range.Max);
return true;
};
void SetRange(double _min, double _max) {
Range.Min = _min;
Range.Max = _max;
Constrain();
PickerTimeMin = ImPlotTime::FromDouble(Range.Min);
PickerTimeMax = ImPlotTime::FromDouble(Range.Max);
}
void SetRange(const ImPlotRange& range) {
SetRange(range.Min, range.Max);
}
void Constrain() {
Range.Min = ImConstrainNan(ImConstrainInf(Range.Min));
Range.Max = ImConstrainNan(ImConstrainInf(Range.Max));
if (ImHasFlag(Flags, ImPlotAxisFlags_LogScale)) {
Range.Min = ImConstrainLog(Range.Min);
Range.Max = ImConstrainLog(Range.Max);
}
if (ImHasFlag(Flags, ImPlotAxisFlags_Time)) {
Range.Min = ImConstrainTime(Range.Min);
Range.Max = ImConstrainTime(Range.Max);
}
if (Range.Max <= Range.Min)
Range.Max = Range.Min + DBL_EPSILON;
}
};
// Axis state information only needed between BeginPlot/EndPlot
struct ImPlotAxisState
{
ImPlotAxis* Axis;
ImGuiCond RangeCond;
bool HasRange;
bool Present;
bool HasLabels;
bool Invert;
bool LockMin;
bool LockMax;
bool Lock;
bool IsTime;
ImPlotAxisState(ImPlotAxis* axis, bool has_range, ImGuiCond range_cond, bool present) {
Axis = axis;
HasRange = has_range;
RangeCond = range_cond;
Present = present;
HasLabels = !ImHasFlag(Axis->Flags, ImPlotAxisFlags_NoTickLabels);
Invert = ImHasFlag(Axis->Flags, ImPlotAxisFlags_Invert);
LockMin = ImHasFlag(Axis->Flags, ImPlotAxisFlags_LockMin) || (HasRange && RangeCond == ImGuiCond_Always);
LockMax = ImHasFlag(Axis->Flags, ImPlotAxisFlags_LockMax) || (HasRange && RangeCond == ImGuiCond_Always);
Lock = !Present || ((LockMin && LockMax) || (HasRange && RangeCond == ImGuiCond_Always));
IsTime = ImHasFlag(Axis->Flags, ImPlotAxisFlags_Time);
}
ImPlotAxisState() { }
};
struct ImPlotAxisColor
{
ImU32 Major, Minor, MajTxt, MinTxt;
ImPlotAxisColor() { Major = Minor = MajTxt = MinTxt = 0; }
};
// State information for Plot items
struct ImPlotItem
{
ImGuiID ID;
ImVec4 Color;
int NameOffset;
bool Show;
bool LegendHovered;
bool SeenThisFrame;
ImPlotItem() {
ID = 0;
Color = ImPlot::NextColormapColor();
NameOffset = -1;
Show = true;
SeenThisFrame = false;
LegendHovered = false;
}
~ImPlotItem() { ID = 0; }
};
// Holds Plot state information that must persist after EndPlot
struct ImPlotState
{
ImPlotFlags Flags;
ImPlotFlags PreviousFlags;
ImPlotAxis XAxis;
ImPlotAxis YAxis[IMPLOT_Y_AXES];
ImPool<ImPlotItem> Items;
ImVec2 SelectStart;
ImVec2 QueryStart;
ImRect QueryRect;
ImRect BB_Legend;
bool Selecting;
bool Querying;
bool Queried;
bool DraggingQuery;
int ColormapIdx;
int CurrentYAxis;
ImPlotState() {
Flags = PreviousFlags = ImPlotFlags_None;
SelectStart = QueryStart = ImVec2(0,0);
Selecting = Querying = Queried = DraggingQuery = false;
ColormapIdx = CurrentYAxis = 0;
}
};
// Temporary data storage for upcoming plot
struct ImPlotNextPlotData
{
ImGuiCond XRangeCond;
ImGuiCond YRangeCond[IMPLOT_Y_AXES];
ImPlotRange X;
ImPlotRange Y[IMPLOT_Y_AXES];
bool HasXRange;
bool HasYRange[IMPLOT_Y_AXES];
bool ShowDefaultTicksX;
bool ShowDefaultTicksY[IMPLOT_Y_AXES];
bool FitX;
bool FitY[IMPLOT_Y_AXES];
double* LinkedXmin;
double* LinkedXmax;
double* LinkedYmin[IMPLOT_Y_AXES];
double* LinkedYmax[IMPLOT_Y_AXES];
ImPlotNextPlotData() {
HasXRange = false;
ShowDefaultTicksX = true;
FitX = false;
LinkedXmin = LinkedXmax = NULL;
for (int i = 0; i < IMPLOT_Y_AXES; ++i) {
HasYRange[i] = false;
ShowDefaultTicksY[i] = true;
FitY[i] = false;
LinkedYmin[i] = LinkedYmax[i] = NULL;
}
}
};
// Temporary data storage for upcoming item
struct ImPlotItemStyle {
ImVec4 Colors[5]; // ImPlotCol_Line, ImPlotCol_Fill, ImPlotCol_MarkerOutline, ImPlotCol_MarkerFill, ImPlotCol_ErrorBar
float LineWeight;
ImPlotMarker Marker;
float MarkerSize;
float MarkerWeight;
float FillAlpha;
float ErrorBarSize;
float ErrorBarWeight;
float DigitalBitHeight;
float DigitalBitGap;
bool RenderLine;
bool RenderFill;
bool RenderMarkerLine;
bool RenderMarkerFill;
ImPlotItemStyle() {
for (int i = 0; i < 5; ++i)
Colors[i] = IMPLOT_AUTO_COL;
LineWeight = MarkerSize = MarkerWeight = FillAlpha = ErrorBarSize = ErrorBarWeight = DigitalBitHeight = DigitalBitGap = IMPLOT_AUTO;
Marker = IMPLOT_AUTO;
}
};
// Holds state information that must persist between calls to BeginPlot()/EndPlot()
struct ImPlotContext {
// Plot States
ImPool<ImPlotState> Plots;
ImPlotState* CurrentPlot;
ImPlotItem* CurrentItem;
// Legend
ImVector<int> LegendIndices;
ImGuiTextBuffer LegendLabels;
// Bounding Boxes
ImRect BB_Frame;
ImRect BB_Canvas;
ImRect BB_Plot;
// Axis States
ImPlotAxisColor Col_X;
ImPlotAxisColor Col_Y[IMPLOT_Y_AXES];
ImPlotAxisState X;
ImPlotAxisState Y[IMPLOT_Y_AXES];
// Tick Marks and Labels
ImPlotTickCollection XTicks;
ImPlotTickCollection YTicks[IMPLOT_Y_AXES];
float YAxisReference[IMPLOT_Y_AXES];
// Transformations and Data Extents
ImPlotScale Scales[IMPLOT_Y_AXES];
ImRect PixelRange[IMPLOT_Y_AXES];
double Mx;
double My[IMPLOT_Y_AXES];
double LogDenX;
double LogDenY[IMPLOT_Y_AXES];
ImPlotRange ExtentsX;
ImPlotRange ExtentsY[IMPLOT_Y_AXES];
// Data Fitting Flags
bool FitThisFrame;
bool FitX;
bool FitY[IMPLOT_Y_AXES];
// Hover states
bool Hov_Frame;
bool Hov_Plot;
// Axis Rendering Flags
bool RenderX;
bool RenderY[IMPLOT_Y_AXES];
// Axis Locking Flags
bool LockPlot;
bool ChildWindowMade;
// Style and Colormaps
ImPlotStyle Style;
ImVector<ImGuiColorMod> ColorModifiers;
ImVector<ImGuiStyleMod> StyleModifiers;
const ImVec4* Colormap;
int ColormapSize;
ImVector<ImPlotColormapMod> ColormapModifiers;
// Time
tm Tm;
// Misc
int VisibleItemCount;
int DigitalPlotItemCnt;
int DigitalPlotOffset;
ImPlotNextPlotData NextPlotData;
ImPlotItemStyle NextItemStyle;
ImPlotInputMap InputMap;
ImPlotPoint MousePos[IMPLOT_Y_AXES];
};
struct ImPlotAxisScale
{
ImPlotPoint Min, Max;
ImPlotAxisScale(int y_axis, float tx, float ty, float zoom_rate) {
ImPlotContext& gp = *GImPlot;
Min = ImPlot::PixelsToPlot(gp.BB_Plot.Min - gp.BB_Plot.GetSize() * ImVec2(tx * zoom_rate, ty * zoom_rate), y_axis);
Max = ImPlot::PixelsToPlot(gp.BB_Plot.Max + gp.BB_Plot.GetSize() * ImVec2((1 - tx) * zoom_rate, (1 - ty) * zoom_rate), y_axis);
}
};
//-----------------------------------------------------------------------------
// [SECTION] Internal API
// No guarantee of forward compatibility here!
//-----------------------------------------------------------------------------
namespace ImPlot {
//-----------------------------------------------------------------------------
// [SECTION] Context Utils
//-----------------------------------------------------------------------------
// Initializes an ImPlotContext
IMPLOT_API void Initialize(ImPlotContext* ctx);
// Resets an ImPlot context for the next call to BeginPlot
IMPLOT_API void Reset(ImPlotContext* ctx);
//-----------------------------------------------------------------------------
// [SECTION] Plot Utils
//-----------------------------------------------------------------------------
// Gets a plot from the current ImPlotContext
IMPLOT_API ImPlotState* GetPlot(const char* title);
// Gets the current plot from the current ImPlotContext
IMPLOT_API ImPlotState* GetCurrentPlot();
// Busts the cache for every plot in the current context
IMPLOT_API void BustPlotCache();
// Shows a plot's context menu.
IMPLOT_API void ShowPlotContextMenu(ImPlotState& plot);
//-----------------------------------------------------------------------------
// [SECTION] Item Utils
//-----------------------------------------------------------------------------
// Begins a new item. Returns false if the item should not be plotted. Pushes PlotClipRect.
IMPLOT_API bool BeginItem(const char* label_id, ImPlotCol recolor_from = -1);
// Ends an item (call only if BeginItem returns true). Pops PlotClipRect.
IMPLOT_API void EndItem();
// Register or get an existing item from the current plot
IMPLOT_API ImPlotItem* RegisterOrGetItem(const char* label_id);
// Get the ith plot item from the current plot
IMPLOT_API ImPlotItem* GetItem(int i);
// Get a plot item from the current plot
IMPLOT_API ImPlotItem* GetItem(const char* label_id);
// Gets a plot item from a specific plot
IMPLOT_API ImPlotItem* GetItem(const char* plot_title, const char* item_label_id);
// Gets the current item
IMPLOT_API ImPlotItem* GetCurrentItem();
// Busts the cache for every item for every plot in the current context.
IMPLOT_API void BustItemCache();
//-----------------------------------------------------------------------------
// [SECTION] Axis Utils
//-----------------------------------------------------------------------------
// Gets the current y-axis for the current plot
inline int GetCurrentYAxis() { return GImPlot->CurrentPlot->CurrentYAxis; }
// Updates axis ticks, lins, and label colors
IMPLOT_API void UpdateAxisColors(int axis_flag, ImPlotAxisColor* col);
// Updates plot-to-pixel space transformation variables for the current plot.
IMPLOT_API void UpdateTransformCache();
// Gets the XY scale for the current plot and y-axis
inline ImPlotScale GetCurrentScale() { return GImPlot->Scales[GetCurrentYAxis()]; }
// Returns true if the user has requested data to be fit.
inline bool FitThisFrame() { return GImPlot->FitThisFrame; }
// Extends the current plots axes so that it encompasses point p
IMPLOT_API void FitPoint(const ImPlotPoint& p);
// Returns true if two ranges overlap
inline bool RangesOverlap(const ImPlotRange& r1, const ImPlotRange& r2)
{ return r1.Min <= r2.Max && r2.Min <= r1.Max; }
// Updates pointers for linked axes from axis internal range.
IMPLOT_API void PushLinkedAxis(ImPlotAxis& axis);
// Updates axis internal range from points for linked axes.
IMPLOT_API void PullLinkedAxis(ImPlotAxis& axis);
// Shows an axis's context menu.
IMPLOT_API void ShowAxisContextMenu(ImPlotAxisState& state, bool time_allowed = false);
//-----------------------------------------------------------------------------
// [SECTION] Legend Utils
//-----------------------------------------------------------------------------
// Returns the number of entries in the current legend
IMPLOT_API int GetLegendCount();
// Gets the ith entry string for the current legend
IMPLOT_API const char* GetLegendLabel(int i);
//-----------------------------------------------------------------------------
// [SECTION] Tick Utils
//-----------------------------------------------------------------------------
// Label a tick with default formatting.
IMPLOT_API void LabelTickDefault(ImPlotTick& tick, ImGuiTextBuffer& buffer);
// Label a tick with scientific formating.
IMPLOT_API void LabelTickScientific(ImPlotTick& tick, ImGuiTextBuffer& buffer);
// Label a tick with time formatting.
IMPLOT_API void LabelTickTime(ImPlotTick& tick, ImGuiTextBuffer& buffer, const ImPlotTime& t, ImPlotTimeFmt fmt, bool hour24);
// Populates a list of ImPlotTicks with normal spaced and formatted ticks
IMPLOT_API void AddTicksDefault(const ImPlotRange& range, int nMajor, int nMinor, ImPlotTickCollection& ticks);
// Populates a list of ImPlotTicks with logarithmic space and formatted ticks
IMPLOT_API void AddTicksLogarithmic(const ImPlotRange& range, int nMajor, ImPlotTickCollection& ticks);
// Populates a list of ImPlotTicks with time formatted ticks.
IMPLOT_API void AddTicksTime(const ImPlotRange& range, int nMajor, bool hour24, ImPlotTickCollection& ticks);
// Populates a list of ImPlotTicks with custom spaced and labeled ticks
IMPLOT_API void AddTicksCustom(const double* values, const char* const labels[], int n, ImPlotTickCollection& ticks);
//-----------------------------------------------------------------------------
// [SECTION] Styling Utils
//-----------------------------------------------------------------------------
// Get styling data for next item (call between Begin/EndItem)
inline const ImPlotItemStyle& GetItemStyle() { return GImPlot->NextItemStyle; }
// Returns true if a color is set to be automatically determined
inline bool IsColorAuto(const ImVec4& col) { return col.w == -1; }
// Returns true if a style color is set to be automaticaly determined
inline bool IsColorAuto(ImPlotCol idx) { return IsColorAuto(GImPlot->Style.Colors[idx]); }
// Returns the automatically deduced style color
IMPLOT_API ImVec4 GetAutoColor(ImPlotCol idx);
// Returns the style color whether it is automatic or custom set
inline ImVec4 GetStyleColorVec4(ImPlotCol idx) { return IsColorAuto(idx) ? GetAutoColor(idx) : GImPlot->Style.Colors[idx]; }
inline ImU32 GetStyleColorU32(ImPlotCol idx) { return ImGui::ColorConvertFloat4ToU32(GetStyleColorVec4(idx)); }
// Get built-in colormap data and size
IMPLOT_API const ImVec4* GetColormap(ImPlotColormap colormap, int* size_out);
// Linearly interpolates a color from the current colormap given t between 0 and 1.
IMPLOT_API ImVec4 LerpColormap(const ImVec4* colormap, int size, float t);
// Resamples a colormap. #size_out must be greater than 1.
IMPLOT_API void ResampleColormap(const ImVec4* colormap_in, int size_in, ImVec4* colormap_out, int size_out);
// Draws vertical text. The position is the bottom left of the text rect.
IMPLOT_API void AddTextVertical(ImDrawList *DrawList, ImVec2 pos, ImU32 col, const char* text_begin, const char* text_end = NULL);
// Calculates the size of vertical text
inline ImVec2 CalcTextSizeVertical(const char *text) { ImVec2 sz = ImGui::CalcTextSize(text); return ImVec2(sz.y, sz.x); }
// Returns white or black text given background color
inline ImU32 CalcTextColor(const ImVec4& bg) { return (bg.x * 0.299 + bg.y * 0.587 + bg.z * 0.114) > 0.729 ? IM_COL32_BLACK : IM_COL32_WHITE; }
//-----------------------------------------------------------------------------
// [SECTION] Math and Misc Utils
//-----------------------------------------------------------------------------
// Rounds x to powers of 2,5 and 10 for generating axis labels (from Graphics Gems 1 Chapter 11.2)
IMPLOT_API double NiceNum(double x, bool round);
// Computes order of magnitude of double.
inline int OrderOfMagnitude(double val) { return val == 0 ? 0 : (int)(floor(log10(fabs(val)))); }
// Returns the precision required for a order of magnitude.
inline int OrderToPrecision(int order) { return order > 0 ? 0 : 1 - order; }
// Returns a floating point precision to use given a value
inline int Precision(double val) { return OrderToPrecision(OrderOfMagnitude(val)); }
// Returns the intersection point of two lines A and B (assumes they are not parallel!)
inline ImVec2 Intersection(const ImVec2& a1, const ImVec2& a2, const ImVec2& b1, const ImVec2& b2) {
float v1 = (a1.x * a2.y - a1.y * a2.x); float v2 = (b1.x * b2.y - b1.y * b2.x);
float v3 = ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x));
return ImVec2((v1 * (b1.x - b2.x) - v2 * (a1.x - a2.x)) / v3, (v1 * (b1.y - b2.y) - v2 * (a1.y - a2.y)) / v3);
}
// Fills a buffer with n samples linear interpolated from vmin to vmax
template <typename T>
void FillRange(ImVector<T>& buffer, int n, T vmin, T vmax) {
buffer.resize(n);
T step = (vmax - vmin) / (n - 1);
for (int i = 0; i < n; ++i) {
buffer[i] = vmin + i * step;
}
}
// Offsets and strides a data buffer
template <typename T>
inline T OffsetAndStride(const T* data, int idx, int count, int offset, int stride) {
idx = ImPosMod(offset + idx, count);
return *(const T*)(const void*)((const unsigned char*)data + (size_t)idx * stride);
}
//-----------------------------------------------------------------------------
// Time Utils
//-----------------------------------------------------------------------------
// Returns true if year is leap year (366 days long)
inline bool IsLeapYear(int year) {
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}
// Returns the number of days in a month, accounting for Feb. leap years. #month is zero indexed.
inline int GetDaysInMonth(int year, int month) {
static const int days[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
return days[month] + (int)(month == 1 && IsLeapYear(year));
}
// Make a UNIX timestamp from a tm struct expressed in UTC time (i.e. GMT timezone).
IMPLOT_API ImPlotTime MkGmtTime(struct tm *ptm);
// Make a tm struct expressed in UTC time (i.e. GMT timezone) from a UNIX timestamp.
IMPLOT_API tm* GetGmtTime(const ImPlotTime& t, tm* ptm);
// Make a UNIX timestamp from a tm struct expressed in local time.
IMPLOT_API ImPlotTime MkLocTime(struct tm *ptm);
// Make a tm struct expressed in local time from a UNIX timestamp.
IMPLOT_API tm* GetLocTime(const ImPlotTime& t, tm* ptm);
// NB: The following functions only work if there is a current ImPlotContext because the
// internal tm struct is owned by the context! They are aware of ImPlotStyle.UseLocalTime.
// Make a timestamp from time components.
// year[1970-3000], month[0-11], day[1-31], hour[0-23], min[0-59], sec[0-59], us[0,999999]
IMPLOT_API ImPlotTime MakeTime(int year, int month = 0, int day = 1, int hour = 0, int min = 0, int sec = 0, int us = 0);
// Get year component from timestamp [1970-3000]
IMPLOT_API int GetYear(const ImPlotTime& t);
// Adds or subtracts time from a timestamp. #count > 0 to add, < 0 to subtract.
IMPLOT_API ImPlotTime AddTime(const ImPlotTime& t, ImPlotTimeUnit unit, int count);
// Rounds a timestamp down to nearest unit.
IMPLOT_API ImPlotTime FloorTime(const ImPlotTime& t, ImPlotTimeUnit unit);
// Rounds a timestamp up to the nearest unit.
IMPLOT_API ImPlotTime CeilTime(const ImPlotTime& t, ImPlotTimeUnit unit);
// Rounds a timestamp up or down to the nearest unit.
IMPLOT_API ImPlotTime RoundTime(const ImPlotTime& t, ImPlotTimeUnit unit);
// Combines the date of one timestamp with the time-of-day of another timestamp.
IMPLOT_API ImPlotTime CombineDateTime(const ImPlotTime& date_part, const ImPlotTime& time_part);
// Formats a timestamp t into a buffer according to #fmt for 12 hour clock
IMPLOT_API int FormatTime12(const ImPlotTime& t, char* buffer, int size, ImPlotTimeFmt fmt);
// Formats a timestamp t into a buffer according to #fmt for 24 hour clock.
IMPLOT_API int FormatTime24(const ImPlotTime& t, char* buffer, int size, ImPlotTimeFmt fmt);
// Prints a timestamp to console
IMPLOT_API void PrintTime(const ImPlotTime& t, ImPlotTimeFmt fmt = ImPlotTimeFmt_DayMoYrHrMinSUs);
// Shows a date picker widget block (year/month/day).
// #level = 0 for day, 1 for month, 2 for year. Modified by user interaction.
// #t will be set when a day is clicked and the function will return true.
// #t1 and #t2 are optional dates to highlight.
IMPLOT_API bool ShowDatePicker(const char* id, int* level, ImPlotTime* t, const ImPlotTime* t1 = NULL, const ImPlotTime* t2 = NULL);
// Shows a time picker widget block (hour/min/sec). #hour24 will format time for 24 hour clock.
// #t will be set when a new hour, minute, or sec is selected or am/pm is toggled, and the function will return true.
IMPLOT_API bool ShowTimePicker(const char* id, ImPlotTime* t, bool hour24);
//-----------------------------------------------------------------------------
// [SECTION] Internal / Experimental Plotters
// No guarantee of forward compatibility here!
//-----------------------------------------------------------------------------
// Plots axis-aligned, filled rectangles. Every two consecutive points defines opposite corners of a single rectangle.
IMPLOT_API void PlotRects(const char* label_id, const float* xs, const float* ys, int count, int offset = 0, int stride = sizeof(float));
IMPLOT_API void PlotRects(const char* label_id, const double* xs, const double* ys, int count, int offset = 0, int stride = sizeof(double));
IMPLOT_API void PlotRects(const char* label_id, ImPlotPoint (*getter)(void* data, int idx), void* data, int count, int offset = 0);
} // namespace ImPlot