1
0
Fork 0
mirror of https://github.com/gwm17/spspy.git synced 2024-09-20 22:47:27 -04:00
spspy/spspy/SPSReaction.py

109 lines
6.1 KiB
Python

from .data.NuclearData import global_nuclear_data, NucleusData
from .SPSTarget import SPSTarget
from dataclasses import dataclass
from numpy import sqrt, cos, pi, sin
INVALID_KINETIC_ENERGY: float = -1000.0
@dataclass
class RxnParameters:
target: NucleusData
projectile: NucleusData
ejectile: NucleusData
beamEnergy: float = 0.0 #MeV
magneticField: float = 0.0 #kG
spsAngle: float = 0.0 #rad
def create_reaction_parameters(zt: int, at: int, zp: int, ap: int, ze: int, ae: int) -> RxnParameters:
return RxnParameters(global_nuclear_data.get_data(zt, at), global_nuclear_data.get_data(zp, ap), global_nuclear_data.get_data(ze, ae))
class Reaction:
DEG2RAD: float = pi/180.0 #degrees -> radians
C = 299792458 #speed of light m/s
QBRHO2P = 1.0E-9*C #Converts qbrho to momentum (p) (kG*cm -> MeV/c)
FP_MAGNIFICATION = 0.39
FP_DISPERSION = 1.96
def __init__(self, params: RxnParameters, target: SPSTarget):
self.params = params
self.targetMaterial = target
self.rxnLayer = self.targetMaterial.get_rxn_layer(self.params.target.Z, self.params.target.A)
self.setup_nuclei()
def setup_nuclei(self) -> None:
residZ = self.params.target.Z + self.params.projectile.Z - self.params.ejectile.Z
residA = self.params.target.A + self.params.projectile.A - self.params.ejectile.A
assert residZ > 0 and residA > 0, "Unable to construct residual in Reaction!"
self.residual = global_nuclear_data.get_data(residZ, residA)
self.Qvalue = self.params.target.mass + self.params.projectile.mass - self.params.ejectile.mass - self.residual.mass
def __str__(self) -> str:
return f"{self.params.target.prettyIsotopicSymbol}({self.params.projectile.prettyIsotopicSymbol},{self.params.ejectile.prettyIsotopicSymbol}){self.residual.prettyIsotopicSymbol}"
def __repr__(self) -> str:
return f"{self.params.target.isotopicSymbol}({self.params.projectile.isotopicSymbol},{self.params.ejectile.isotopicSymbol}){self.residual.isotopicSymbol}_{self.params.beamEnergy}MeV_{self.params.spsAngle}deg_{self.params.magneticField}kG"
def get_latex_rep(self) -> str:
return f"{self.params.target.get_latex_rep()}({self.params.projectile.get_latex_rep()},{self.params.ejectile.get_latex_rep()}){self.residual.get_latex_rep()}"
#MeV
def calculate_ejectile_KE(self, excitation: float) -> float:
rxnQ = self.Qvalue - excitation
angleRads = self.params.spsAngle * self.DEG2RAD
beamRxnEnergy = self.params.beamEnergy - self.targetMaterial.get_incoming_energyloss(self.params.projectile.Z, self.params.projectile.mass, self.params.beamEnergy, self.rxnLayer, 0.0)
threshold = -rxnQ*(self.params.ejectile.mass+self.residual.mass)/(self.params.ejectile.mass + self.residual.mass - self.params.projectile.mass)
if beamRxnEnergy < threshold:
return INVALID_KINETIC_ENERGY
term1 = sqrt(self.params.projectile.mass * self.params.ejectile.mass * beamRxnEnergy) / (self.params.ejectile.mass + self.residual.mass) * cos(angleRads * self.DEG2RAD)
term2 = (beamRxnEnergy * (self.residual.mass - self.params.projectile.mass) + self.residual.mass * rxnQ) / (self.params.ejectile.mass + self.residual.mass)
ke1 = term1 + sqrt(term1**2.0 + term2)
ke2 = term1 + sqrt(term1**2.0 + term2)
ejectileEnergy = 0.0
if ke1 > 0.0:
ejectileEnergy = ke1**2.0
else:
ejectileEnergy = ke2**2.0
ejectileEnergy -= self.targetMaterial.get_outgoing_energyloss(self.params.ejectile.Z, self.params.ejectile.mass, ejectileEnergy, self.rxnLayer, angleRads)
return ejectileEnergy
def convert_ejectile_KE_2_rho(self, ejectileEnergy: float) -> float:
if ejectileEnergy == INVALID_KINETIC_ENERGY:
return 0.0
p = sqrt( ejectileEnergy * (ejectileEnergy + 2.0 * self.params.ejectile.mass))
#convert to QBrho
qbrho = p/self.QBRHO2P
return qbrho / (float(self.params.ejectile.Z) * self.params.magneticField)
def calculate_excitation(self, rho: float) -> float:
angleRads = self.params.spsAngle * self.DEG2RAD
ejectileP = rho * float(self.params.ejectile.Z) * self.params.magneticField * self.QBRHO2P
ejectileEnergy = sqrt(ejectileP**2.0 + self.params.ejectile.mass**2.0) - self.params.ejectile.mass
ejectileRxnEnergy = ejectileEnergy + self.targetMaterial.get_outgoing_reverse_energyloss(self.params.ejectile.Z, self.params.ejectile.mass, ejectileEnergy, self.rxnLayer, angleRads)
ejectileRxnP = sqrt(ejectileRxnEnergy * (ejectileRxnEnergy + 2.0 * self.params.ejectile.mass))
beamRxnEnergy = self.params.beamEnergy - self.targetMaterial.get_incoming_energyloss(self.params.projectile.Z, self.params.projectile.mass, self.params.beamEnergy, self.rxnLayer, 0.0)
beamRxnP = sqrt(beamRxnEnergy * (beamRxnEnergy + 2.0 * self.params.projectile.mass))
residRxnEnergy = beamRxnEnergy + self.params.projectile.mass + self.params.target.mass - ejectileRxnEnergy - self.params.ejectile.mass
residRxnP2 = beamRxnP**2.0 + ejectileRxnP**2.0 - 2.0 * ejectileRxnP * beamRxnP * cos(angleRads)
return sqrt(residRxnEnergy**2.0 - residRxnP2) - self.residual.mass
def calculate_focal_plane_offset(self, ejectileEnergy: float) -> float:
if ejectileEnergy == INVALID_KINETIC_ENERGY:
return 0.0
ejectileRho = self.convert_ejectile_KE_2_rho(ejectileEnergy)
k = sqrt(self.params.projectile.mass * self.params.ejectile.mass * self.params.beamEnergy / ejectileEnergy) * sin(self.params.spsAngle * self.DEG2RAD)
k /= self.params.ejectile.mass + self.residual.mass - sqrt(self.params.projectile.mass * self.params.ejectile.mass * self.params.beamEnergy/ejectileEnergy) * cos(self.params.spsAngle * self.DEG2RAD)
return -1.0*k*ejectileRho*self.FP_DISPERSION*self.FP_MAGNIFICATION
def update_parameters(self, beamEnergy: float, spsAngle: float, magenticField: float):
self.params.beamEnergy = beamEnergy
self.params.spsAngle = spsAngle
self.params.magneticField = magenticField