#include "global.h" //To compile : g++ AD.cxx -o {Input Executable Name} -lX11 #include "Coeff.h" using namespace std; double CG(double j1, double j2, double J, double m1, double m2, double M){ //recall that j1,m1 + j2,m2 = J,M // printf("-----------------\n"); if(M != m1 + m2) return 0; double Jmin = abs(j1 - j2); double Jmax = j1+j2; if(J < Jmin || Jmax < J) return 0; double a0 = (2*J+1.0)*tgamma(J+j1-j2+1) * tgamma(J-j1+j2+1) * tgamma(j1+j2-J+1)/tgamma(J+j1+j2+1.0 +1); double A0 = sqrt(a0); double a = tgamma(J+M+1) *tgamma(J-M+1); double a1= tgamma(j1+m1+1) *tgamma(j1-m1+1); double a2= tgamma(j2+m2+1) *tgamma(j2-m2+1); double A = sqrt( a * a1 * a2); int pmax = min( min(j1+j2-J,j1-m1),j2 + m2); double cg = 0.; for( int p =0; p<=pmax;p++){ double p1 = tgamma(j1+j2-J-p+1); double p2 = tgamma(j1-m1-p+1); double p3 = tgamma(j2+m2-p+1); double p4 = tgamma(J -j2 +m1 +p+1); double p5 = tgamma(J -j1 -m2 +p+1); double t = pow(-1,p)/(tgamma(p+1) * p1 * p2 * p3 * p4 * p5); cg += t; } return A0*A*cg; } double ThreeJsym(double j1, double m1, double j2, double m2, double j3, double m3){ //[j1 j2 j3] = (-1)^(j1-j2-m3)/ sqrt(2*j3+1) * CG(j3, -m3, j1, m1, j2, m2) //[m1 m2 m3] //J,M,j1,m1,j2,m2) //return pow(-1,j1 -j2 -m3)/sqrt(2*j3+1)*CG(j3,-m3,j1,m1,j2,m2); double threej = pow(-1,j1 -j2 -m3)/sqrt(2*j3+1)*CG(j3,-m3,j1,m1,j2,m2); //double threej = pow(-1,j1 -j2 -m3)/sqrt(2*j3+1)*CG(j1,j2,j3,m1,m2,-m3); printf("---------\n"); printf("3J= %lf\n",threej); printf("---------\n"); return threej; } double SixJsym(double j1, double j2, double j3, double j4, double j5, double j6){ //--------------------------------------------------------------------------------// // The six j symbol describes the coupling between j1 j2 and j3 to J - j1. // essentially a triangle of angular momentum rules between these. // j1 = j1 // j2 = j2 // j3 = j1 + j2 // j4 = j3 // j5 = J = j1 + j2 + j3 // j6 = j2 + j3 // ----------------------------------------------------------------------------- // // the following conditions check the triangle selection rules if( j3 < abs(j1 - j2) || j1 + j2 < j3) return 0; if( j6 < abs(j2 - j4) || j2 + j4 < j6) return 0; if( j5 < abs(j1 - j6) || j1 + j6 < j5) return 0; if( j5 < abs(j3 - j4) || j3 + j4 < j5) return 0; // now that they have been checked, we can go ahead and calculate sixJ. double sixj = 0.0; float m1 = -j1; float m2 = -j2; float m3 = -j3; float m4 = -j4; float m5 = -j5; float m6 = -j6; printf("here\n"); for(; m1 <= j1; m1 = m1 +1){ for(; m2 <= j2; m2 = m2 +1){ for(; m3 <= j3; m3 = m3 + 1){ for(; m4 <= j4; m4 = m4 +1){ for(; m5 <= j5; m5 = m5 + 1){ for(; m6 <= j6; m6 = m6 +1){ double h = (j1 - m1) + (j2 - m2) + (j3 -m3) + (j4 - m4) + (j5 - m5) + (j6 - m6); double b1 = ThreeJsym(j1, -m1, j2, -m2, j3, -m3); double b2 = ThreeJsym(j1, m1, j5, -m5, j6, m6); double b3 = ThreeJsym(j4, m4, j2, m2, j6, -m6); double b4 = ThreeJsym(j4, -m4, j5, m5, j3, m3); double b = b1 * b2 * b3 * b4; printf("h = %lf\n", h); printf("b1 = %lf\n", b1); printf("b2 = %lf\n", b2); printf("b3 = %lf\n", b3); printf("b4 = %lf\n", b4); printf("b = %lf\n", b); sixj += pow(-1,h)*b; } } } } } } return sixj; } int main(int argc, char ** argv){ //if mod (2*J1,2) = 1 do this // double A0[6] = {1,1,2,0,0,0}; // double A1[6] = {1,1,4,0,0,0}; //if mod(2*j1,20 = 0 do this double j1 = 1.; double j2 = 2.; double A0[6] = {j1,j1,2,.5,-.5,0}; double A1[6] = {j1,j1,2,-.5,.5,0}; double A2[6] = {j1,j1,4,-.5,.5,0}; double A3[6] = {j1,j1,4,.5,-.5,0}; double cgr0= CG(j1,j1,2,.5,-.5,0); double cgr1= CG(j1,j1,2,-.5,.5,0); double cgr2= CG(j1,j1,4,.5,-.5,0); double cgr3= CG(j1,j1,4,-.5,.5,0); printf("------\n"); // printf("CGR0 = %lf\n",cgr0); // printf("CGR1 = %lf\n",cgr1); // printf("CGR2 = %lf\n",cgr2); // printf("CGR3 = %lf\n",cgr3); double sixj = SixJsym(j1,j1,1.,1.,2.,2.); double sixj2 = SixJsym(j1,j1,1.,2.,2.,2.); double sixj3 = SixJsym(j1,j1,2.,2.,2.,2.); printf("6-J = %lf\n", sixj); return 0; }