#include #include #include #include #include #include #include #include #include #include //To compile : g++ AD.cxx -o {Input Executable Name} -lX11 #include "Coeff.h" using namespace std; double CG2(double A[6]){ double ii[6]; double im[6]; double ix[9]; double nx[5]; for(int i = 0;i<6;i++){ ii[i] = 2.0*A[i]; } double Cleb = 0.; double IA = ii[0]; double IB = ii[1]; double IC = ii[2]; double ID = ii[3]; double IE = ii[4]; double IF = ii[5]; if(ID + IE - IF != 0){return 0;} double K0 = IA + IB + IC; if((int)K0 % 2 !=0){return 0;} double K1 = IA + IB - IC; double K2 = IC + IA - IB; double K3 = IB + IC - IA; double K4 = IA - abs(IB-IC); double K5 = IB - abs(IC-IA); double K6 = IC - abs(IA-IB); double karr[6] = {K1,K2,K3,K4,K5,K6}; double kmn=karr[0]; double kmx=karr[0]; for(int i=0;i<6;i++) { if(kmn>karr[i]) { kmn=karr[i]; } else if(kmx= IB){ if(IC >= IB){ if(IB != 0){ if(IE < 0){ //assuming the logic passes; FC2 = IC +1; IT = K0/2 + 1; ix[0] = IT-IC; ix[1] = IT-IB; ix[2] = IT-IA; ix[3] = (IA+ID)/2 +1; ix[4] = ix[3] - ID; ix[5] = (IB+IE)/2 + 1; ix[6] = ix[5] - IE; ix[7] = (IC+IF)/2 +1; ix[8] = ix[7] - IF; //lgamma(arg) returns the log of the factorial of arg if arg is a natural number. double sqfclg = log(FC2) - lgamma(IT+1); double IXI; for(int i = 0; i<9;i++){ IXI = ix[i]; sqfclg = sqfclg + lgamma(IXI); } sqfclg = 0.5 * sqfclg; printf("Here place 1\n"); printf("ix[0] = %lf\n",ix[0]); printf("ix[1] = %lf\n",ix[1]); printf("ix[2] = %lf\n",ix[2]); printf("ix[3] = %lf\n",ix[3]); printf("ix[4] = %lf\n",ix[4]); printf("ix[5] = %lf\n",ix[5]); printf("ix[6] = %lf\n",ix[6]); printf("ix[7] = %lf\n",ix[7]); printf("ix[8] = %lf\n",ix[8]); printf("sqdclg = %lf\n",sqfclg); double xarr[3] = {ix[0],ix[4],ix[5]}; double xmn=xarr[0]; double xmx=xarr[0]; for(int i=0;i<3;i++) { if(xmn>xarr[i]) { xmn=xarr[i]; } else if(xmxcarr[i]) { cmn=carr[i]; } else if(cmx NZMIN){return 0;} double SS=0.; double S1= pow((-1.),(NZMIN-1)); for(int NZ = NZMIN;NZ<=NZMAX;NZ++){ double NZM1 = NZ -1; nx[0] = ix[0]-NZM1; nx[1] = ix[4]-NZM1; nx[2] = ix[5]-NZM1; nx[3] = NZ-NZ2; nx[4] = NZ-NZ3; double termlg = sqfclg - lgamma(NZ); for(int i = 0; i<5; i++){ IXI = nx[i]; termlg= termlg -lgamma(IXI); SS = SS + S1*exp(termlg); S1 =-S1; Cleb=sgnfac*SS; } } }else{ // if (IE >=0) _>>> ID = -ID; IE = -IE; IF = -IF; if((int)(IA+IB-IC)/2 %2 != 0) sgnfac = (-1)*sgnfac; IT = K0/2 + 1; ix[0] = IT-IC; ix[1] = IT-IB; ix[2] = IT-IA; ix[3] = (IA+ID)/2 +1; ix[4] = ix[3] - ID; ix[5] = (IB+IE)/2 + 1; ix[6] = ix[5] - IE; ix[7] = (IC+IF)/2 +1; ix[8] = ix[7] - IF; //lgamma(arg) returns the log of the factorial of arg if arg is a natural number. FC2 = IC + 1; double sqfclg = log(FC2) - lgamma(IT+1); printf("IT = %lf\n",IT); printf("sqfclg = %lf\n",sqfclg); printf("FC2 = %lf\n",FC2); printf("lgamma(IT) = %lf\n",lgamma(IT+1)); printf("log(fC2) = %lf\n",log(FC2)); printf("IA = %lf\n",IA); printf("IB = %lf\n",IB); printf("IC = %lf\n",IC); printf("ID = %lf\n",ID); printf("IE = %lf\n",IE); printf("IF = %lf\n",IF); double IXI; for(int i = 0; i<9;i++){ IXI = ix[i]; sqfclg = sqfclg + lgamma(IXI); printf("sqfclg = %lf\n",sqfclg); } sqfclg = 0.5 * sqfclg; printf("Here place 2\n"); printf("ix[0] = %lf\n",ix[0]); printf("ix[1] = %lf\n",ix[1]); printf("ix[2] = %lf\n",ix[2]); printf("ix[3] = %lf\n",ix[3]); printf("ix[4] = %lf\n",ix[4]); printf("ix[5] = %lf\n",ix[5]); printf("ix[6] = %lf\n",ix[6]); printf("ix[7] = %lf\n",ix[7]); printf("ix[8] = %lf\n",ix[8]); printf("sqdclg = %lf\n",sqfclg); double xarr[3] = {ix[0],ix[4],ix[5]}; double xmn=xarr[0]; double xmx=xarr[0]; for(int i=0;i<3;i++) { if(xmn>xarr[i]) { xmn=xarr[i]; } else if(xmxcarr[i]) { cmn=carr[i]; } else if(cmx NZMIN){return 0;} double SS=0.; double S1= pow((-1.),(NZMIN-1)); for(int NZ = NZMIN;NZ<=NZMAX;NZ++){ double NZM1 = NZ -1; nx[0] = ix[0]-NZM1; nx[1] = ix[4]-NZM1; nx[2] = ix[5]-NZM1; nx[3] = NZ-NZ2; nx[4] = NZ-NZ3; double termlg = sqfclg - lgamma(NZ); for(int i = 0; i<5; i++){ IXI = nx[i]; termlg= termlg -lgamma(IXI); SS = SS + S1*exp(termlg); S1 =-S1; Cleb=sgnfac*SS; } } } // if (IB != 0) _>>>> }else{ Cleb = sgnfac; return Cleb; } // if (IC < IB) _>>> }else{ IT = IC; IC = IB; IB = IT; IT = IF; IF = -IE; IE = -IT; sgnfac = sqrt((2.*A[2]+1.0)/(2.*A[1]+1.0)); if((int)(im[0]-im[3])/2 %2 != 0){sgnfac = (-1.)*sgnfac;} Cleb = sgnfac; return Cleb; } // if(IA < IB) _>> }else{ if(IA >= IC){ IT = IC; IC = IB; IB = IT; IT = IF; IF = -IE; IE = -IT; Cleb = sgnfac; return Cleb; // if (IA < IC) as well as (IA < IB) }else{ IT =IA; IA =IB; IB =IT; IT =ID; ID =IE; IE =IT; if((int)(K1/2) %2 != 0) {sgnfac = -1.;} //call to 135 again. if(IB != 0){ if(IE < 0){ //assuming the logic passes; FC2 = IC +1; IT = K0/2 + 1; ix[0] = IT-IC; ix[1] = IT-IB; ix[2] = IT-IA; ix[3] = (IA+ID)/2 +1; ix[4] = ix[3] - ID; ix[5] = (IB+IE)/2 + 1; ix[6] = ix[5] - IE; ix[7] = (IC+IF)/2 +1; ix[8] = ix[7] - IF; //lgamma(arg) returns the log of the factorial of arg if arg is a natural number. double sqfclg = log(FC2) - lgamma(IT+1); double IXI; for(int i = 0; i<9;i++){ IXI = ix[i]; sqfclg = sqfclg + lgamma(IXI); } sqfclg = 0.5 * sqfclg; printf("Here place 3\n"); printf("ix[0] = %lf\n",ix[0]); printf("ix[1] = %lf\n",ix[1]); printf("ix[2] = %lf\n",ix[2]); printf("ix[3] = %lf\n",ix[3]); printf("ix[4] = %lf\n",ix[4]); printf("ix[5] = %lf\n",ix[5]); printf("ix[6] = %lf\n",ix[6]); printf("ix[7] = %lf\n",ix[7]); printf("ix[8] = %lf\n",ix[8]); printf("sqdclg = %lf\n",sqfclg); double xarr[3] = {ix[0],ix[4],ix[5]}; double xmn=xarr[0]; double xmx=xarr[0]; for(int i=0;i<3;i++) { if(xmn>xarr[i]) { xmn=xarr[i]; } else if(xmxcarr[i]) { cmn=carr[i]; } else if(cmx NZMIN){return 0;} double SS=0.; double S1= pow((-1.),(NZMIN-1)); for(int NZ = NZMIN;NZ<=NZMAX;NZ++){ double NZM1 = NZ -1; nx[0] = ix[0]-NZM1; nx[1] = ix[4]-NZM1; nx[2] = ix[5]-NZM1; nx[3] = NZ-NZ2; nx[4] = NZ-NZ3; double termlg = sqfclg - lgamma(NZ); for(int i = 0; i<5; i++){ IXI = nx[i]; termlg= termlg -lgamma(IXI); SS = SS + S1*exp(termlg); S1 =-S1; Cleb=sgnfac*SS; } } }else{ // if (IE >=0) _>>> ID = -ID; IE = -IE; IF = -IF; if((int)(IA+IB-IC)/2 %2 != 0) sgnfac = (-1.)*sgnfac; IT = K0/2 + 1; ix[0] = IT-IC; ix[1] = IT-IB; ix[2] = IT-IA; ix[3] = (IA+ID)/2 +1; ix[4] = ix[3] - ID; ix[5] = (IB+IE)/2 + 1; ix[6] = ix[5] - IE; ix[7] = (IC+IF)/2 +1; ix[8] = ix[7] - IF; //lgamma(arg) returns the log of the factorial of arg if arg is a natural number. double sqfclg = log(FC2) - lgamma(IT+1); double IXI; for(int i = 0; i<9;i++){ IXI = ix[i]; sqfclg = sqfclg + lgamma(IXI); } sqfclg = 0.5 * sqfclg; printf("Here place 4\n"); printf("ix[0] = %lf\n",ix[0]); printf("ix[1] = %lf\n",ix[1]); printf("ix[2] = %lf\n",ix[2]); printf("ix[3] = %lf\n",ix[3]); printf("ix[4] = %lf\n",ix[4]); printf("ix[5] = %lf\n",ix[5]); printf("ix[6] = %lf\n",ix[6]); printf("ix[7] = %lf\n",ix[7]); printf("ix[8] = %lf\n",ix[8]); printf("sqdclg = %lf\n",sqfclg); double xarr[3] = {ix[0],ix[4],ix[5]}; double xmn=xarr[0]; double xmx=xarr[0]; for(int i=0;i<3;i++) { if(xmn>xarr[i]) { xmn=xarr[i]; } else if(xmxcarr[i]) { cmn=carr[i]; } else if(cmx NZMIN){return 0;} double SS=0.; double S1= pow((-1.),(NZMIN-1)); for(int NZ = NZMIN;NZ<=NZMAX;NZ++){ double NZM1 = NZ -1; nx[0] = ix[0]-NZM1; nx[1] = ix[4]-NZM1; nx[2] = ix[5]-NZM1; nx[3] = NZ-NZ2; nx[4] = NZ-NZ3; double termlg = sqfclg - lgamma(NZ); for(int i = 0; i<5; i++){ IXI = nx[i]; termlg= termlg -lgamma(IXI); SS = SS + S1*exp(termlg); S1 =-S1; Cleb=sgnfac*SS; } } } // if (IB != 0) _>>>> }else{ Cleb = sgnfac; return Cleb; } } } return Cleb; } double CG(double J, double M, double j1, double m1, double j2, double m2){ //recall that j1,m1 + j2,m2 = J,M if(M != m1 + m2) return 0; double Jmin = abs(j1 - j2); double Jmax = j1+j2; if(J < Jmin || Jmax < J) return 0; double a0 = (2*J+1.0)*factorial(J+j1-j2) * factorial(J-j1+j2) * factorial(j1+j2-J)/factorial(J+j1+j2+1.0); double A0 = sqrt(a0); double a = factorial(J+M) *factorial(J-M); double a1= factorial(j1+m1) *factorial(j1-m1); double a2= factorial(j2+m2) *factorial(j2-m2); double A = sqrt( a * a1 * a2); int pmax = min( min(j1+j2-J,j1-m1),j2 + m2); double cg = 0.; for( int p =0; p<=pmax;p++){ double p1 = factorial(j1+j2-J-p); double p2 = factorial(j1-m1-p); double p3 = factorial(j2+m2-p); double p4 = factorial(J -j2 +m1 +p); double p5 = factorial(J -j1 -m2 +p); double t = pow(-1,p)/(factorial(p) * p1 * p2 * p3 * p4 * p5); cg += t; } return A0*A*cg; } double CG_a(double A[6]){ //recall that j1,m1 + j2,m2 = J,M //testing assingments until the output is the same. double j1 = A[0]; double j2 = A[1]; double J = A[2]; double m1 = A[3]; double m2 = A[4]; double M = A[5]; if(M != m1 + m2) return 0; double Jmin = abs(j1 - j2); double Jmax = j1+j2; if(J < Jmin || Jmax < J) return 0; double a0 = (2*J+1.0)*factorial(J+j1-j2) * factorial(J-j1+j2) * factorial(j1+j2-J)/factorial(J+j1+j2+1.0); double A0 = sqrt(a0); double a = factorial(J+M) *factorial(J-M); double a1= factorial(j1+m1) *factorial(j1-m1); double a2= factorial(j2+m2) *factorial(j2-m2); double A1 = sqrt( a * a1 * a2); int pmax = min( min(j1+j2-J,j1-m1),j2 + m2); double cg = 0.; for( int p =0; p<=pmax;p++){ double p1 = factorial(j1+j2-J-p); double p2 = factorial(j1-m1-p); double p3 = factorial(j2+m2-p); double p4 = factorial(J -j2 +m1 +p); double p5 = factorial(J -j1 -m2 +p); double t = pow(-1,p)/(factorial(p) * p1 * p2 * p3 * p4 * p5); cg += t; } return A0*A1*cg; } double ThreeJsym(double j1, double m1, double j2, double m2, double j3, double m3){ //[j1 j2 j3] = (-1)^(j1-j2-m3)/ sqrt(2*j3+1) * CG(j3, -m3, j1, m1, j2, m2) //[m1 m2 m3] return pow(-1,j1 -j2 -m3)/sqrt(2*j3+1)*CG(j3,-m3,j1,m1,j2,m2); } double SixJsym(double j1, double j2, double j3, double j4, double j5, double j6){ //--------------------------------------------------------------------------------// // The six j symbol describes the coupling between j1 j2 and j3 to J - j1. // essentially a triangle of angular momentum rules between these. // j1 = j1 // j2 = j2 // j3 = j1 + j2 // j4 = j3 // j5 = J = j1 + j2 + j3 // j6 = j2 + j3 // ----------------------------------------------------------------------------- // // the following conditions check the triangle selection rules if( j3 < abs(j1 - j2) || j1 + j2 < j3) return 0; if( j6 < abs(j2 - j4) || j2 + j4 < j6) return 0; if( j5 < abs(j1 - j6) || j1 + j6 < j5) return 0; if( j5 < abs(j3 - j4) || j3 + j4 < j5) return 0; // now that they have been checked, we can go ahead and calculate sixJ. double sixj = 0.0; float m1 = -j1; float m2 = -j2; float m3 = -j3; float m4 = -j4; float m5 = -j5; float m6 = -j6; for(; m1 <= j1; m1 = m1 +1){ for(; m2 <= j2; m2 = m2 +1){ for(; m3 <= j3; m3 = m3 + 1){ for(; m4 <= j4; m4 = m4 +1){ for(; m5 <= j5; m5 = m5 + 1){ for(; m6 <= j6; m6 = m6 +1){ double h = (j1 - m1) + (j2 - m2) + (j3 -m3) + (j4 - m4) + (j5 - m5) + (j6 - m6); double b1 = ThreeJsym(j1, -m1, j2, -m2, j3, -m3); double b2 = ThreeJsym(j1, m1, j5, -m5, j6, m6); double b3 = ThreeJsym(j4, m4, j2, m2, j6, -m6); double b4 = ThreeJsym(j4, -m4, j5, m5, j3, m3); double b = b1 * b2 * b3 * b4; sixj += pow(-1,h)*b; } } } } } } return sixj; } int main(int argc, char ** argv){ double A[6] = {1,1,2,0,0,0}; double cg = CG2(A); double cgr = CG(1,1,2,0,0,0); printf("------\n"); printf("CG = %lf\n",cg); printf("CGR = %lf\n",cgr); return 0; }