#ifndef QK_H #define QK_H #include double TauCal(double Energy_MeV){ double E_log = log(Energy_MeV); double EL1 = E_log; double EL2 = pow(E_log,2); double EL3 = pow(E_log,3); double EL4 = pow(E_log,4); double EL5 = pow(E_log,5); double TT = -1.1907 -0.5372*EL1 - 0.0438*EL2 + 0.0218*EL3 + 0.0765*EL4 + 0.0095*EL5; return exp(TT); } double LegendreP(int n, double theta){ if( n == 0 ) return 1; if( n == 2 ) return (3. * cos(theta) * cos(theta) -1 )/2.; if( n == 4 ) return (35 * pow( cos(theta), 4) - 30 * pow(cos(theta),2) + 3.) /8.; return 0; } double * QK(double Energy_keV, double radius_cm, double distance_cm, double thickness_cm){ double E_MeV = Energy_keV/1000; double Tau = TauCal(E_MeV); double alpha = atan( radius_cm / (distance_cm + thickness_cm) ); double gamma = atan( radius_cm / distance_cm ); double sum1 = 0,sum2 = 0,sum3 = 0.; double sum4 = 0,sum5 = 0,sum6 = 0.; double beta1 = 0; double beta2 = 0; double A = 0.; int div = 1000; double delx1 = (alpha)/div; // mrad double delx2 = (gamma-alpha)/div; for(int i = 0; i<=div; i++){ if( i == 0 || i == div ) { A = 1.0; beta1 = i * delx1; beta2 = alpha + i * delx2; }else{ A = ( i % 2 == 0 ? 2.0 : 4.0 ); if( i % 2 == 1 ){ beta1 = i * delx1; beta2 = alpha + i * delx2; } } double ex1 = exp( - 1.0 * Tau * thickness_cm / cos(beta1) ); double term1 = A * (1-ex1) * sin(beta1) * delx1; sum1 += LegendreP(2, beta1) * term1; sum2 += LegendreP(4, beta1) * term1; sum3 += term1; double ex2 = exp( -1 * Tau * (radius_cm / sin(beta2) - distance_cm /cos(beta2)) ); double term2 = A * (1-ex2) * sin(beta2) * delx2; sum4 += LegendreP(2, beta2) * term2; sum5 += LegendreP(4, beta2) * term2; sum6 += term2; //if( i % 75 == 0) printf("%4d | %10.6f, %10.6f, %10.6f %d | %10.6f, %10.6f %10.6f %10.6f, %10.6f %10.6f \n", i, beta1, beta2, A, J, sum1, sum2, sum3, sum4, sum5, sum6); } double * Qk = new double[2]; Qk[0] = (sum1+sum4)/(sum3+sum6); Qk[1] = (sum2+sum5)/(sum3+sum6); printf("--------------\n"); printf(" QD2 = %.20f\n",Qk[0]); printf(" QD4 = %.20f\n",Qk[1]); printf("--------------\n"); return Qk; } /// Relic code double QK2(double Energy, double radius, double distance, double thickness){ double Qkn = 0.; double E_mev = Energy/1000; double E_log = log(E_mev); double EL1 = E_log; double EL2 = pow(E_log,2); double EL3 = EL1*EL2; double EL4 = pow(EL2,2); double EL5 = EL4*EL1; double TT = -1.1907 -0.5372*EL1 - 0.0438*EL2 + 0.0218*EL3 + 0.0765*EL4 + 0.0095*EL5; double Tau = exp(TT); // printf("TLN = %lf\n",TT); // printf("Tau = %lf\n",Tau); //calulating attenuation angles double Z1 = radius / (distance + thickness); double Z2 = radius / distance; double alpha = atan(Z1); double gamma = atan(Z2); double beta; double BL = 0.; double BU = alpha; double A = 0.; double delx1 = (BU-BL)/1000; // printf("alpha = %lf\n",alpha); // printf("gamma = %lf\n",gamma); // printf("delx1 = %lf\n",delx1); double sum1 = 0,sum2 = 0,sum3 = 0.; double sum4 = 0,sum5 = 0,sum6 = 0.; double cosb,sinb,secb,cscb,c2,c4,fac1,fac2,ex1,ex2 = 0.; double term1 = 0,term2 = 0,term3 = 0.; double term4 = 0,term5 = 0,term6 = 0.; int J=0; int loop_length = 1000; for(int i = 0; i<=loop_length; i++){ /* if(i > 0 and i < loop_length){ J = i%2; //printf("\t\ti = %d\nJ=%d\n",i,J); if(J==0){A=2.; }else {A=4.;} beta = BL+i+delx1; }else{A=.1;beta = BL+i+delx1;} */ if(i != 0){ if(i != loop_length){ J = i%2; if(J==0){ A = 2.; }else{ A=4.; beta = BL+i*delx1; } }else{ A=1.0; beta = BL+i*delx1;} }else{ A =1.0; beta = BL+i*delx1; } // printf("Beta = %lf\n",beta); cosb = cos(beta); sinb = sin(beta); secb = 1.0/cosb; c2 = pow(cosb,2); c4 = pow(cosb,4); fac1 = -1 *Tau *thickness *secb; ex1 = exp(fac1); term1 = 0.5*(3*c2-1)*(1-ex1)*sinb*A*delx1; term2 = 0.125*A*(35*c4-30*c2+3)*(1-ex1)*sinb*delx1; term3 = A*(1-ex1)*sinb*delx1; sum1 = sum1 +term1; sum2 = sum2 +term2; sum3 = sum3 +term3; //if( i % 75 == 0) printf("%4d | %10.6f, %10.6f, %d | %10.6f, %10.6f %10.6f \n", i, beta, A, J, sum1, sum2, sum3); } double ans1 = sum1/3; double ans2 = sum2/3; double ans3 = sum3/3; //printf("%10.6f, %10.6f %10.6f \n", ans1, ans2, ans3); double LB=alpha; double UB=gamma; double delx2 = (UB-LB)/1000; for(int i = 0; i<=loop_length; i++){ /* if(i > 0 and i < loop_length){ J2 = i%2; //printf("\t\ti = %d\nJ=%d\n",i,J2); if(J2==0){B=2.; }else {B=4.;} beta2 = LB+i+delx2; }else{B=.1;beta2 = LB+i+delx2;} */ if(i != 0){ if(i != loop_length){ J = i%2; if(J==0){ A = 2.; }else{A=4.;beta = LB+i*delx2;} }else{A=1.0;beta = LB+i*delx2;} }else{A =1.0;beta = LB+i*delx2;} // printf("Beta1 = %lf\n",beta); cosb = cos(beta); sinb = sin(beta); secb = 1.0/cosb; cscb = 1.0/sinb; c2 = pow(cosb,2); c4 = pow(cosb,4); fac2 = -1 *Tau *(radius*cscb -distance*secb); ex2 = exp(fac2); term4 = 0.5*A*(3*c2-1)*(1-ex2)*sinb*delx2; term5 = 0.125*A*(35*c4-30*c2+3)*(1-ex2)*sinb*delx2; term6 = A*(1-ex2)*sinb*delx2; sum4 = sum4 +term4; sum5 = sum5 +term5; sum6 = sum6 +term6; } double ans4=sum4/3; double ans5=sum5/3; double ans6=sum6/3; /* printf("ans1:%lf\n",ans1*100); printf("ans2:%lf\n",ans2*100); printf("ans3:%lf\n",ans3*100); printf("ans4:%lf\n",ans4*100); printf("ans5:%lf\n",ans5*100); printf("ans6:%lf\n",ans6*100); */ double QD2 = (ans1+ans4)/(ans3+ans6); double QD4 = (ans2+ans5)/(ans3+ans6); printf("--------------\n"); printf(" QD2 = %lf\n",QD2); printf(" QD4 = %lf\n",QD4); printf("--------------\n"); /* //Now output a file that contains R, D , T , gamma energy, attentuation coeff, q2 and q4 ofstream fileo; fileo.open ("ad.txt"); fileo << "Radius = " << radius <<" [cm]\n"; fileo << "Distance = " << distance <<" [cm]\n"; fileo << "Thickness = " << thickness <<" [cm]\n"; fileo << "Atten.C = " << Tau <<" [cm^-1]\n"; fileo << "Gamma_E = " << Energy <<" [KeV]\n"; fileo << "QD2 = " << QD2 << "\n"; fileo << "QD4 = " << QD4 << "\n"; fileo.close(); */ return QD2; } #endif