268 lines
6.6 KiB
C
268 lines
6.6 KiB
C
double TauCal(double Energy_MeV){
|
|
|
|
double E_log = log(Energy_MeV);
|
|
double EL1 = E_log;
|
|
double EL2 = pow(E_log,2);
|
|
double EL3 = pow(E_log,3);
|
|
double EL4 = pow(E_log,4);
|
|
double EL5 = pow(E_log,5);
|
|
double TT = -1.1907 -0.5372*EL1 - 0.0438*EL2 + 0.0218*EL3 + 0.0765*EL4 + 0.0095*EL5;
|
|
|
|
return exp(TT);
|
|
}
|
|
|
|
double LegendreP(int n, double theta){
|
|
if( n == 0 ) return 1;
|
|
if( n == 2 ) return (3. * cos(theta) * cos(theta) -1 )/2.;
|
|
if( n == 4 ) return (35 * pow( cos(theta), 4) - 30 * pow(cos(theta),2) + 3.) /8.;
|
|
|
|
return 0;
|
|
}
|
|
|
|
double * QK(double Energy_keV, double radius_cm, double distance_cm, double thickness_cm){
|
|
|
|
double E_MeV = Energy_keV/1000;
|
|
double Tau = TauCal(E_MeV);
|
|
|
|
double alpha = atan( radius_cm / (distance_cm + thickness_cm) );
|
|
double gamma = atan( radius_cm / distance_cm );
|
|
|
|
double sum1 = 0,sum2 = 0,sum3 = 0.;
|
|
double sum4 = 0,sum5 = 0,sum6 = 0.;
|
|
|
|
double beta1 = 0;
|
|
double beta2 = 0;
|
|
double A = 0.;
|
|
|
|
int div = 1000;
|
|
|
|
double delx1 = (alpha)/div; // mrad
|
|
double delx2 = (gamma-alpha)/div;
|
|
|
|
for(int i = 0; i<=div; i++){
|
|
|
|
int J = i % 2;
|
|
if( J == 0 ){
|
|
A = 2.0;
|
|
}else{
|
|
A = 4.0;
|
|
beta1 = i * delx1;
|
|
beta2 = alpha + i * delx2;
|
|
}
|
|
|
|
if( i == 0 || i == div ) {
|
|
A = 1.0;
|
|
beta1 = i * delx1;
|
|
beta2 = alpha + i * delx2;
|
|
}
|
|
|
|
double cosb = cos(beta1);
|
|
double sinb = sin(beta1);
|
|
double ex1 = exp( - 1.0 * Tau * thickness_cm / cosb );
|
|
double term3 = (1-ex1) * sinb * A * delx1;
|
|
double term1 = LegendreP(2, beta1) * term3;
|
|
double term2 = LegendreP(4, beta1) * term3;
|
|
|
|
sum1 += term1;
|
|
sum2 += term2;
|
|
sum3 += term3;
|
|
|
|
cosb = cos(beta2);
|
|
sinb = sin(beta2);
|
|
double ex2 = exp( -1 * Tau * (radius_cm / sinb - distance_cm /cosb) );
|
|
double term6 = A * (1-ex2) * sinb * delx2;
|
|
double term4 = LegendreP(2, beta2) * term6;
|
|
double term5 = LegendreP(4, beta2) * term6;
|
|
|
|
sum4 = sum4 +term4;
|
|
sum5 = sum5 +term5;
|
|
sum6 = sum6 +term6;
|
|
|
|
//if( i % 75 == 0) printf("%4d | %10.6f, %10.6f %d | %10.6f, %10.6f %10.6f \n", i, beta, A, J, sum1, sum2, sum3);
|
|
}
|
|
|
|
double ans1 = sum1/3;
|
|
double ans2 = sum2/3;
|
|
double ans3 = sum3/3;
|
|
double ans4 = sum4/3;
|
|
double ans5 = sum5/3;
|
|
double ans6 = sum6/3;
|
|
|
|
double * Qk = new double[2];
|
|
Qk[0] = (ans1+ans4)/(ans3+ans6);
|
|
Qk[1] = (ans2+ans5)/(ans3+ans6);
|
|
|
|
printf("--------------\n");
|
|
printf(" QD2 = %lf\n",Qk[0]);
|
|
printf(" QD4 = %lf\n",Qk[1]);
|
|
printf("--------------\n");
|
|
|
|
return Qk;
|
|
}
|
|
|
|
/// Relic code
|
|
double QK2(double Energy, double radius, double distance, double thickness){
|
|
|
|
|
|
double Qkn = 0.;
|
|
double E_mev = Energy/1000;
|
|
|
|
double E_log = log(E_mev);
|
|
double EL1 = E_log;
|
|
double EL2 = pow(E_log,2);
|
|
double EL3 = EL1*EL2;
|
|
double EL4 = pow(EL2,2);
|
|
double EL5 = EL4*EL1;
|
|
double TT = -1.1907 -0.5372*EL1 - 0.0438*EL2 + 0.0218*EL3 + 0.0765*EL4 + 0.0095*EL5;
|
|
double Tau = exp(TT);
|
|
// printf("TLN = %lf\n",TT);
|
|
// printf("Tau = %lf\n",Tau);
|
|
//calulating attenuation angles
|
|
|
|
double Z1 = radius / (distance + thickness);
|
|
double Z2 = radius / distance;
|
|
double alpha = atan(Z1);
|
|
double gamma = atan(Z2);
|
|
double beta;
|
|
double BL = 0.;
|
|
double BU = alpha;
|
|
double A = 0.;
|
|
double delx1 = (BU-BL)/1000;
|
|
// printf("alpha = %lf\n",alpha);
|
|
// printf("gamma = %lf\n",gamma);
|
|
// printf("delx1 = %lf\n",delx1);
|
|
double sum1 = 0,sum2 = 0,sum3 = 0.;
|
|
double sum4 = 0,sum5 = 0,sum6 = 0.;
|
|
double cosb,sinb,secb,cscb,c2,c4,fac1,fac2,ex1,ex2 = 0.;
|
|
double term1 = 0,term2 = 0,term3 = 0.;
|
|
double term4 = 0,term5 = 0,term6 = 0.;
|
|
int J=0;
|
|
|
|
int loop_length = 1000;
|
|
for(int i = 0; i<=loop_length; i++){
|
|
/*
|
|
if(i > 0 and i < loop_length){
|
|
J = i%2;
|
|
//printf("\t\ti = %d\nJ=%d\n",i,J);
|
|
if(J==0){A=2.;
|
|
}else {A=4.;}
|
|
beta = BL+i+delx1;
|
|
}else{A=.1;beta = BL+i+delx1;}
|
|
*/
|
|
if(i != 0){
|
|
if(i != loop_length){
|
|
J = i%2;
|
|
if(J==0){
|
|
A = 2.;
|
|
}else{
|
|
A=4.;
|
|
beta = BL+i*delx1;
|
|
}
|
|
}else{
|
|
A=1.0;
|
|
beta = BL+i*delx1;}
|
|
}else{
|
|
A =1.0;
|
|
beta = BL+i*delx1;
|
|
}
|
|
// printf("Beta = %lf\n",beta);
|
|
|
|
cosb = cos(beta);
|
|
sinb = sin(beta);
|
|
secb = 1.0/cosb;
|
|
c2 = pow(cosb,2);
|
|
c4 = pow(cosb,4);
|
|
|
|
fac1 = -1 *Tau *thickness *secb;
|
|
|
|
ex1 = exp(fac1);
|
|
term1 = 0.5*(3*c2-1)*(1-ex1)*sinb*A*delx1;
|
|
term2 = 0.125*A*(35*c4-30*c2+3)*(1-ex1)*sinb*delx1;
|
|
term3 = A*(1-ex1)*sinb*delx1;
|
|
|
|
sum1 = sum1 +term1;
|
|
sum2 = sum2 +term2;
|
|
sum3 = sum3 +term3;
|
|
|
|
//if( i % 75 == 0) printf("%4d | %10.6f, %10.6f, %d | %10.6f, %10.6f %10.6f \n", i, beta, A, J, sum1, sum2, sum3);
|
|
|
|
}
|
|
|
|
double ans1 = sum1/3;
|
|
double ans2 = sum2/3;
|
|
double ans3 = sum3/3;
|
|
|
|
//printf("%10.6f, %10.6f %10.6f \n", ans1, ans2, ans3);
|
|
|
|
double LB=alpha;
|
|
double UB=gamma;
|
|
double delx2 = (UB-LB)/1000;
|
|
for(int i = 0; i<=loop_length; i++){
|
|
/*
|
|
if(i > 0 and i < loop_length){
|
|
J2 = i%2;
|
|
//printf("\t\ti = %d\nJ=%d\n",i,J2);
|
|
if(J2==0){B=2.;
|
|
}else {B=4.;}
|
|
beta2 = LB+i+delx2;
|
|
}else{B=.1;beta2 = LB+i+delx2;}
|
|
*/
|
|
if(i != 0){
|
|
if(i != loop_length){
|
|
J = i%2;
|
|
if(J==0){
|
|
A = 2.;
|
|
}else{A=4.;beta = LB+i*delx2;}
|
|
}else{A=1.0;beta = LB+i*delx2;}
|
|
}else{A =1.0;beta = LB+i*delx2;}
|
|
// printf("Beta1 = %lf\n",beta);
|
|
cosb = cos(beta);
|
|
sinb = sin(beta);
|
|
secb = 1.0/cosb;
|
|
cscb = 1.0/sinb;
|
|
c2 = pow(cosb,2);
|
|
c4 = pow(cosb,4);
|
|
fac2 = -1 *Tau *(radius*cscb -distance*secb);
|
|
ex2 = exp(fac2);
|
|
term4 = 0.5*A*(3*c2-1)*(1-ex2)*sinb*delx2;
|
|
term5 = 0.125*A*(35*c4-30*c2+3)*(1-ex2)*sinb*delx2;
|
|
term6 = A*(1-ex2)*sinb*delx2;
|
|
sum4 = sum4 +term4;
|
|
sum5 = sum5 +term5;
|
|
sum6 = sum6 +term6;
|
|
}
|
|
double ans4=sum4/3;
|
|
double ans5=sum5/3;
|
|
double ans6=sum6/3;
|
|
/*
|
|
printf("ans1:%lf\n",ans1*100);
|
|
printf("ans2:%lf\n",ans2*100);
|
|
printf("ans3:%lf\n",ans3*100);
|
|
printf("ans4:%lf\n",ans4*100);
|
|
printf("ans5:%lf\n",ans5*100);
|
|
printf("ans6:%lf\n",ans6*100);
|
|
*/
|
|
double QD2 = (ans1+ans4)/(ans3+ans6);
|
|
double QD4 = (ans2+ans5)/(ans3+ans6);
|
|
|
|
printf("--------------\n");
|
|
printf(" QD2 = %lf\n",QD2);
|
|
printf(" QD4 = %lf\n",QD4);
|
|
printf("--------------\n");
|
|
|
|
/*
|
|
//Now output a file that contains R, D , T , gamma energy, attentuation coeff, q2 and q4
|
|
ofstream fileo;
|
|
fileo.open ("ad.txt");
|
|
fileo << "Radius = " << radius <<" [cm]\n";
|
|
fileo << "Distance = " << distance <<" [cm]\n";
|
|
fileo << "Thickness = " << thickness <<" [cm]\n";
|
|
fileo << "Atten.C = " << Tau <<" [cm^-1]\n";
|
|
fileo << "Gamma_E = " << Energy <<" [KeV]\n";
|
|
fileo << "QD2 = " << QD2 << "\n";
|
|
fileo << "QD4 = " << QD4 << "\n";
|
|
fileo.close();
|
|
*/
|
|
return QD2;
|
|
}
|