ANASEN_analysis/ClassAnasen.h

102 lines
2.7 KiB
C
Raw Normal View History

2024-01-27 02:09:49 -05:00
#ifndef ClassAnasen_h
#define ClassAnasen_h
#include <cstdio>
#include <TMath.h>
#include <TVector3.h>
class Anasen{
public:
Anasen();
~Anasen() {}
void CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID);
TVector3 GetTrackPos() const {return trackPos;}
TVector3 GetTrackVec() const {return trackVec;}
double GetTrackTheta() const {return trackVec.Theta();}
double GetTrackPhi() const {return trackVec.Phi();}
// void DrawTrack();
private:
const int nWire = 24;
const int wireShift = 3; // how twisted is the wire.
const double AnodeRadius = 38 ; // mm
const double CathodeRadius = 38 ; // mm
const double PCLength = 100; //mm
2024-01-27 02:31:10 -05:00
std::vector<TVector3> P1; // the anode wire position vector in space
std::vector<TVector3> P2; // the anode wire position vector in space
std::vector<TVector3> Q1; // the cathode wire position vector in space
std::vector<TVector3> Q2; // the cathode wire position vector in space
2024-01-27 02:09:49 -05:00
void CalWireDirection();
TVector3 trackPos;
TVector3 trackVec;
double trackPosErrorZ; // mm
TVector3 tracePosErrorXY; // the mag is the size of the error
TVector3 trackVecErrorA; // error vector prependicular to the Anode-Pos plan
TVector3 trackVecErrorC; // error vector prependicular to the Cathode-Pos plan
};
inline Anasen::Anasen(){
CalWireDirection();
}
inline void Anasen::CalWireDirection(){
2024-01-27 02:31:10 -05:00
TVector3 p1; // anode
TVector3 p2;
TVector3 q1; // cathode
TVector3 q2;
2024-01-27 02:09:49 -05:00
for(int i = 0; i < nWire; i++ ){
2024-01-27 02:31:10 -05:00
// Anode rotate right-hand
p1.SetXYZ( AnodeRadius * TMath::Cos( TMath::TwoPi() * i / nWire ),
2024-01-27 02:09:49 -05:00
AnodeRadius * TMath::Sin( TMath::TwoPi() * i / nWire ),
-PCLength/2);
2024-01-27 02:31:10 -05:00
p2.SetXYZ( AnodeRadius * TMath::Cos( TMath::TwoPi() * (i + wireShift) / nWire ),
2024-01-27 02:09:49 -05:00
AnodeRadius * TMath::Sin( TMath::TwoPi() * (i + wireShift) / nWire ),
PCLength/2);
2024-01-27 02:31:10 -05:00
P1.push_back(p1);
P2.push_back(p2);
// Cathod rotate left-hand
2024-01-27 02:09:49 -05:00
2024-01-27 02:31:10 -05:00
p1.SetXYZ( CathodeRadius * TMath::Cos( TMath::TwoPi() * i / nWire ),
2024-01-27 02:09:49 -05:00
CathodeRadius * TMath::Sin( TMath::TwoPi() * i / nWire ),
-PCLength/2);
2024-01-27 02:31:10 -05:00
p2.SetXYZ( CathodeRadius * TMath::Cos( TMath::TwoPi() * (i - wireShift) / nWire ),
2024-01-27 02:09:49 -05:00
CathodeRadius * TMath::Sin( TMath::TwoPi() * (i - wireShift) / nWire ),
PCLength/2);
2024-01-27 02:31:10 -05:00
Q1.push_back(p1);
Q2.push_back(p2);
2024-01-27 02:09:49 -05:00
}
}
inline void Anasen::CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID){
trackPos = sx3Pos;
2024-01-27 02:31:10 -05:00
TVector3 n1 = (P2[anodeID] - P1[anodeID]).Cross((sx3Pos - P1[anodeID]));
TVector3 n2 = (Q2[anodeID] - Q1[anodeID]).Cross((sx3Pos - Q1[anodeID]));
2024-01-27 02:09:49 -05:00
2024-01-27 02:31:10 -05:00
// if the handiness of anode and cathode revered, it should be n2 cross n1
2024-01-27 02:09:49 -05:00
trackVec = (n1.Cross(n2)).Unit();
2024-01-27 02:31:10 -05:00
2024-01-27 02:09:49 -05:00
}
#endif