ANASEN_analysis/Analyzer.C

751 lines
21 KiB
C++
Raw Normal View History

#define Analyzer_cxx
#include "Analyzer.h"
#include "Armory/ClassSX3.h"
#include "Armory/ClassPW.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include "TVector3.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <map>
#include <utility>
#include <algorithm>
2024-04-15 13:29:57 -04:00
TH2F *hsx3IndexVE;
TH2F *hqqqIndexVE;
TH2F *hpcIndexVE;
TH2F *hpcIndexVE_GM;
TH2F *hsx3Coin;
TH2F *hqqqCoin;
TH2F *hpcCoin;
TH2F *hqqqPolar;
TH2F *hsx3VpcIndex;
TH2F *hqqqVpcIndex;
TH2F *hqqqVpcE;
TH2F *hsx3VpcE;
TH2F *hanVScatsum;
TH2F *hanVScatsum_a[24];
TH1F *hPC_E[48];
TH1F *hAnodeMultiplicity;
2024-01-29 19:10:12 -05:00
int padID = 0;
2024-04-15 13:29:57 -04:00
SX3 sx3_contr;
PW pw_contr;
PW pwinstance;
2024-04-15 13:29:57 -04:00
TVector3 hitPos;
std::map<int, std::pair<double, double>> slopeInterceptMap;
2024-04-15 13:29:57 -04:00
bool HitNonZero;
TH1F *hZProj;
void Analyzer::Begin(TTree * /*tree*/)
{
2024-01-29 19:10:12 -05:00
TString option = GetOption();
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE->SetNdivisions(-612, "x");
hqqqIndexVE = new TH2F("hqqqIndexVE", "QQQ index vs Energy; QQQ index ; Energy", 4 * 2 * 16, 0, 4 * 2 * 16, 400, 0, 5000);
hqqqIndexVE->SetNdivisions(-1204, "x");
hpcIndexVE = new TH2F("hpcIndexVE", "PC index vs Energy; PC index ; Energy", 2 * 24, 0, 2 * 24, 400, 0, 16000);
hpcIndexVE->SetNdivisions(-1204, "x");
hpcIndexVE_GM = new TH2F("hpcIndexVE_GM", "PC index vs Energy; PC index ; Energy", 2 * 24, 0, 2 * 24, 400, 0, 16000);
hpcIndexVE_GM->SetNdivisions(-1204, "x");
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
hqqqCoin = new TH2F("hqqqCoin", "QQQ Coincident", 4 * 2 * 16, 0, 4 * 2 * 16, 4 * 2 * 16, 0, 4 * 2 * 16);
hpcCoin = new TH2F("hpcCoin", "PC Coincident", 2 * 24, 0, 2 * 24, 2 * 24, 0, 2 * 24);
hqqqPolar = new TH2F("hqqqPolar", "QQQ Polar ID", 16 * 4, -TMath::Pi(), TMath::Pi(), 16, 10, 50);
hsx3VpcIndex = new TH2F("hsx3Vpcindex", "sx3 vs pc; sx3 index; pc index", 24 * 12, 0, 24 * 12, 48, 0, 48);
hsx3VpcIndex->SetNdivisions(-612, "x");
hsx3VpcIndex->SetNdivisions(-12, "y");
hqqqVpcIndex = new TH2F("hqqqVpcindex", "qqq vs pc; qqq index; pc index", 4 * 2 * 16, 0, 4 * 2 * 16, 48, 0, 48);
hqqqVpcIndex->SetNdivisions(-612, "x");
hqqqVpcIndex->SetNdivisions(-12, "y");
hqqqVpcE = new TH2F("hqqqVpcEnergy", "qqq vs pc; qqq energy; pc energy", 400, 0, 5000, 800, 0, 16000);
hqqqVpcE->SetNdivisions(-612, "x");
hqqqVpcE->SetNdivisions(-12, "y");
hsx3VpcE = new TH2F("hsx3VpcEnergy", "sx3 vs pc; sx3 energy; pc energy", 400, 0, 5000, 800, 0, 16000);
hsx3VpcE->SetNdivisions(-612, "x");
hsx3VpcE->SetNdivisions(-12, "y");
hZProj = new TH1F("hZProj", "Z Projection", 200, -600, 600);
2024-04-15 13:29:57 -04:00
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400, 0, 10000, 400, 0, 16000);
hAnodeMultiplicity = new TH1F("hAnodeMultiplicity", "Number of Anodes/Event", 40, 0, 40);
for (int i = 0; i < 24; i++)
{
TString histName = Form("hAnodeVsCathode_%d", i);
TString histTitle = Form("Anode %d vs Cathode Sum; Anode E; Cathode Sum E", i);
hanVScatsum_a[i] = new TH2F(histName, histTitle, 400, 0, 10000, 400, 0, 16000);
}
for (int i = 0; i < 48; i++)
{
TString histName = Form("hCathode_%d", i);
TString histTitle = Form("Cathode_E_%d;", i);
hPC_E[i] = new TH1F(histName, histTitle, 3200, 0, 32000);
}
2024-04-15 13:29:57 -04:00
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
std::ifstream inputFile("slope_intercept_results.txt");
if (inputFile.is_open())
{
std::string line;
int index;
double slope, intercept;
while (std::getline(inputFile, line))
{
std::stringstream ss(line);
ss >> index >> slope >> intercept;
// wires 37, 39, 44 have fit data that is incorrect or not present, they have thus been set to 1,0 (slope, intercept) for convenience
// wire 19 the 4th point was genereated using the slope of the line produced uising the other 3 points from the wire 1 vs wire 19 plot
if (index >= 0 && index <= 47)
{
slopeInterceptMap[index] = std::make_pair(slope, intercept);
}
}
inputFile.close();
}
else
{
std::cerr << "Error opening slope_intercept.txt" << std::endl;
}
}
Bool_t Analyzer::Process(Long64_t entry)
{
2024-04-15 13:29:57 -04:00
// if ( entry > 100 ) return kTRUE;
hitPos.Clear();
HitNonZero = false;
2024-01-29 19:10:12 -05:00
// if( entry > 1) return kTRUE;
// printf("################### ev : %llu \n", entry);
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
// sx3.Print();
// ########################################################### Raw data
// //======================= SX3
2024-04-15 13:29:57 -04:00
std::vector<std::pair<int, int>> ID; // first = id, 2nd = index
for (int i = 0; i < sx3.multi; i++)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
2024-01-29 19:10:12 -05:00
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
2024-01-29 19:10:12 -05:00
for (int j = i + 1; j < sx3.multi; j++)
{
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
2024-01-29 19:10:12 -05:00
for (int j = 0; j < pc.multi; j++)
{
hsx3VpcIndex->Fill(sx3.index[i], pc.index[j]);
2024-04-15 13:29:57 -04:00
// if( sx3.ch[index] > 8 ){
// hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// }
2024-01-29 19:10:12 -05:00
}
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
2024-04-15 13:29:57 -04:00
// printf("##############################\n");
// for( size_t i = 0; i < ID.size(); i++) printf("%zu | %d %d \n", i, ID[i].first, ID[i].second );
std::vector<std::pair<int, int>> sx3ID;
2024-04-15 13:29:57 -04:00
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{
if (ID[i].first == sx3ID.back().first)
{
2024-04-15 13:29:57 -04:00
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
2024-04-15 13:29:57 -04:00
found = true;
}
}
else
{
if (!found)
{
2024-04-15 13:29:57 -04:00
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
// printf("---------- sx3ID Multi : %zu \n", sx3ID.size());
if (found)
{
2024-04-15 13:29:57 -04:00
int sx3ChUp, sx3ChDn, sx3ChBk;
float sx3EUp, sx3EDn;
// printf("------ sx3 ID : %d, multi: %zu\n", sx3ID[0].first, sx3ID.size());
for (size_t i = 0; i < sx3ID.size(); i++)
{
2024-04-15 13:29:57 -04:00
int index = sx3ID[i].second;
// printf(" %zu | index %d | ch : %d, energy : %d \n", i, index, sx3.ch[index], sx3.e[index]);
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
2024-04-15 13:29:57 -04:00
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
}
else
{
2024-04-15 13:29:57 -04:00
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}
else
{
2024-04-15 13:29:57 -04:00
sx3ChBk = sx3.ch[index];
}
for (int j = 0; j < pc.multi; j++)
{
// hsx3VpcIndex->Fill( sx3.index[i], pc.index[j] );
if (sx3.ch[index] > 8)
{
hsx3VpcE->Fill(sx3.e[i], pc.e[j]);
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
2024-04-15 13:29:57 -04:00
}
}
2024-04-15 13:29:57 -04:00
}
sx3_contr.CalSX3Pos(sx3ID[0].first, sx3ChUp, sx3ChDn, sx3ChBk, sx3EUp, sx3EDn);
hitPos = sx3_contr.GetHitPos();
HitNonZero = true;
// hitPos.Print();
}
}
2024-01-29 19:10:12 -05:00
// //======================= QQQ
for (int i = 0; i < qqq.multi; i++)
{
// for( int j = 0; j < pc.multi; j++){
// if(pc.index[j]==4){
hqqqIndexVE->Fill(qqq.index[i], qqq.e[i]);
// }
// }
for (int j = 0; j < qqq.multi; j++)
{
if (j == i)
continue;
hqqqCoin->Fill(qqq.index[i], qqq.index[j]);
}
for (int j = i + 1; j < qqq.multi; j++)
{
for (int k = 0; k < pc.multi; k++)
{
if (pc.index[k] < 24 && pc.e[k] > 50)
{
hqqqVpcE->Fill(qqq.e[i], pc.e[k]);
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
hqqqVpcIndex->Fill(qqq.index[i], pc.index[j]);
2024-01-29 19:10:12 -05:00
}
// }
}
// if( qqq.used[i] == true ) continue;
2024-01-29 19:10:12 -05:00
// if( qqq.id[i] == qqq.id[j] && (16 - qqq.ch[i]) * (16 - qqq.ch[j]) < 0 ){ // must be same detector and wedge and ring
if (qqq.id[i] == qqq.id[j])
{ // must be same detector
int chWedge = -1;
int chRing = -1;
if (qqq.ch[i] < qqq.ch[j])
{
chRing = qqq.ch[j] - 16;
chWedge = qqq.ch[i];
}
else
{
chRing = qqq.ch[i];
chWedge = qqq.ch[j] - 16;
2024-04-15 13:29:57 -04:00
}
// printf(" ID : %d , chWedge : %d, chRing : %d \n", qqq.id[i], chWedge, chRing);
double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5);
double rho = 10. + 40. / 16. * (chRing + 0.5);
// if(qqq.e[i]>50){
hqqqPolar->Fill(theta, rho);
// }
// qqq.used[i] = true;
// qqq.used[j] = true;
if (!HitNonZero)
{
double x = rho * TMath::Cos(theta);
double y = rho * TMath::Sin(theta);
hitPos.SetXYZ(x, y, 23 + 75 + 30);
HitNonZero = true;
2024-08-26 10:31:09 -04:00
}
}
}
2024-08-26 10:34:13 -04:00
}
// //======================= PC
ID.clear();
int counter = 0;
std::vector<std::pair<int, double>> E;
E.clear();
for (int i = 0; i < pc.multi; i++)
{
if (pc.e[i] > 100)
{
ID.push_back(std::pair<int, int>(pc.id[i], i));
if (pc.index[i] >= 0 && pc.index[i] < 48 && hPC_E[pc.index[i]] != nullptr)
{
// if (pc.index[i] >= 24 && pc.index[i] < 48) {
hPC_E[pc.index[i]]->Fill(pc.e[i]);
}
// }
else
{
printf("Warning: Invalid index %d or null pointer detected!\n", pc.index[i]);
}
}
if (pc.e[i] > 100)
E.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
2024-04-15 13:29:57 -04:00
hpcIndexVE->Fill(pc.index[i], pc.e[i]);
for (int j = i + 1; j < pc.multi; j++)
{
hpcCoin->Fill(pc.index[i], pc.index[j]);
2024-04-15 13:29:57 -04:00
}
// Gain Matching of PC wires
if (pc.index[i] >= 0 && pc.index[i] < 48)
{
// printf("index: %d, Old cathode energy: %d \n", pc.index[i],pc.e[i]);
auto it = slopeInterceptMap.find(pc.index[i]);
if (it != slopeInterceptMap.end())
{
double slope = it->second.first;
double intercept = it->second.second;
// printf("slope: %f, intercept:%f\n" ,slope, intercept);
pc.e[i] = slope * pc.e[i] + intercept;
// printf("index: %d, New cathode energy: %d \n",pc.index[i], pc.e[i]);
}
hpcIndexVE_GM->Fill(pc.index[i], pc.e[i]);
}
}
// Calculate the crossover points and put them into an array
pwinstance.ConstructGeo();
Coord Crossover[24][24][2];
TVector3 a, c, diff;
double a2, ac, c2, adiff, cdiff, denom, alpha, beta;
int index = 0;
for (int i = 0; i < pwinstance.An.size(); i++)
{
a = pwinstance.An[i].first - pwinstance.An[i].second;
for (int j = 0; j < pwinstance.Ca.size(); j++)
{
// Ok so this method uses what is essentially th solution of 2 equations to find the point of intersection between the anode and cathode wires
// here a and c are the vectors of the anode and cathode wires respectively
// diff is the perpendicular vector between the anode and cathode wires
// The idea behind this is to then find the scalars alpha and beta that give a ratio between 0 and -1,
c = pwinstance.Ca[j].first - pwinstance.Ca[j].second;
diff = pwinstance.An[i].first - pwinstance.Ca[j].first;
a2 = a.Dot(a);
ac = a.Dot(c);
c2 = c.Dot(c);
adiff = a.Dot(diff);
cdiff = c.Dot(diff);
denom = a2 * c2 - ac * ac;
alpha = (ac * cdiff - c2 * adiff) / denom;
beta = (a2 * cdiff - ac * adiff) / denom;
Crossover[i][j][0].x = pwinstance.An[i].first.X() + alpha * a.X();
Crossover[i][j][0].y = pwinstance.An[i].first.Y() + alpha * a.Y();
Crossover[i][j][0].z = pwinstance.An[i].first.Z() + alpha * a.Z();
// placeholder variable Crossover[i][j][2].x has nothing to do with the geometry of the crossover and is being used to store the alpha value-
//-so that it can be used to sort "good" hits later
Crossover[i][j][1].x = alpha;
// if (i == 16)
// {
// for (int k = 0; k < 5; k++)
// {
// if ((i + 24 + k) % 24 == j)
// {
// // if (alpha < 0 && alpha >= -1)
// // {
// printf("Anode and cathode indices and coord : %d %d %f %f %f %f\n", i, j, pwinstance.Ca[j].first.X(), pwinstance.Ca[j].first.Y(), pwinstance.Ca[j].first.Z(), alpha);
// printf("Crossover wires, points and alpha are : %f %f %f %f \n", Crossover[i][j][1].x, Crossover[i][j][1].y, Crossover[i][j][1].z, Crossover[i][j][2].x /*this is alpha*/);
// // }
// }
// }
// }
}
}
std::vector<std::pair<int, double>> anodeHits = {};
std::vector<std::pair<int, double>> cathodeHits = {};
int aID = 0;
int cID = 0;
float aE = 0;
float cE = 0;
// Define the excluded SX3 and QQQ channels
// std::unordered_set<int> excludeSX3 = {34, 35, 36, 37, 61, 62, 67, 73, 74, 75, 76, 77, 78, 79, 80, 93, 97, 100, 103, 108, 109, 110, 111, 112};
// std::unordered_set<int> excludeQQQ = {0, 17, 109, 110, 111, 112, 113, 119, 127, 128};
// inCuth=false;
// inCutl=false;
// inPCCut=false;
for (int i = 0; i < pc.multi; i++)
{
if (pc.e[i] > 50 && pc.multi < 7)
{
float aESum = 0;
float cESum = 0;
float aEMax = 0;
float cEMax = 0;
float aEnextMax = 0;
float cEnextMax = 0;
int aIDMax = 0;
int cIDMax = 0;
int aIDnextMax = 0;
int cIDnextMax = 0;
// creating a vector of pairs of anode and cathode hits that is sorted in order of decreasing energy
if (pc.index[i] < 24)
{
anodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
std::sort(anodeHits.begin(), anodeHits.end(), [](const std::pair<int, double> &a, const std::pair<int, double> &b)
{ return a.second > b.second; });
}
else if (pc.index[i] >= 24)
{
cathodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
std::sort(cathodeHits.begin(), cathodeHits.end(), [](const std::pair<int, double> &a, const std::pair<int, double> &b)
{ return a.second > b.second; });
}
for (int j = i + 1; j < pc.multi; j++)
{
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
hpcCoin->Fill(pc.index[i], pc.index[j]);
}
if (anodeHits.size() >= 1 && cathodeHits.size() >= 1)
{
for (const auto &anode : anodeHits)
{
aID = anode.first;
aE = anode.second;
aESum += aE;
if (aE > aEMax)
{
aIDnextMax = aIDMax;
aEnextMax = aEMax;
aEMax = aE;
aIDMax = aID;
}
if (aE > aEnextMax && aE < aEMax)
{
aEnextMax = aE;
aIDnextMax = aID;
}
// printf("aID : %d, aE : %f\n", aID, aE);
}
// printf("aID : %d, aE : %f, cE : %f\n", aID, aE, cE);
for (const auto &cathode : cathodeHits)
{
cID = cathode.first;
cE = cathode.second;
if (cE > cEMax)
{
cIDnextMax = cIDMax;
cEnextMax = cEMax;
cEMax = cE;
cIDMax = cID;
}
if (cE > cEnextMax && cE < cEMax)
{
cEnextMax = cE;
cIDnextMax = cID;
}
cESum += cE;
}
// }
// inCuth = false;
// inCutl = false;
// inPCCut = false;
// for(int j=i+1;j<pc.multi;j++){
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
// hpcCoin->Fill(pc.index[i], pc.index[j]);
// }
// Check if the accumulated energies are within the defined ranges
// if (AnCatSum_high && AnCatSum_high->IsInside(aESum, cESum)) {
// inCuth = true;
// }
// if (AnCatSum_low && AnCatSum_low->IsInside(aESum, cESum)) {
// inCutl = true;
// }
// Fill histograms based on the cut conditions
// if (inCuth && inPCCut) {
// hanVScatsum_hcut->Fill(aESum, cESum);
// }
// if (inCutl && inPCCut) {
// hanVScatsum_lcut->Fill(aESum, cESum);
// }
// for(auto anode : anodeHits){
// float aE = anode.second;
// aESum += aE;
// if(inPCCut){
hanVScatsum->Fill(aEMax, cESum);
// }
if (aID < 24 && aE > 50)
{
hanVScatsum_a[aID]->Fill(aE, cESum);
}
// }
// Fill histograms for the `pc` data
hpcIndexVE->Fill(pc.index[i], pc.e[i]);
// if(inPCCut){
hAnodeMultiplicity->Fill(anodeHits.size());
// }
}
}
}
2024-04-15 13:29:57 -04:00
if (E.size() >= 3)
{
2024-01-29 19:10:12 -05:00
int aID = 0;
int cID = 0;
float aE = 0;
float cE = 0;
// if( ID[0].first < 1 ) {
// aID = pc.ch[ID[0].second];
// cID = pc.ch[ID[1].second];
// }else{
// cID = pc.ch[ID[0].second];
// aID = pc.ch[ID[1].second];
// }
// printf("anode= %d, cathode = %d\n", aID, cID);
for (int k = 0; k < qqq.multi; k++)
{
if (qqq.index[k] == 75 && pc.index[k] == 2 && pc.e[k] > 100)
{
int multi_an = 0;
for (int l = 0; l < E.size(); l++)
{
if (E[l].first < 24)
{
multi_an++;
}
}
if (multi_an >= 1)
{
for (int l = 0; l < E.size(); l++)
{
if (E[l].first < 24 && E[l].first != 19 && E[l].first != 12)
{
aE = E[l].second;
}
else if (E[l].first > 24)
{
cE = E[l].second;
}
}
}
}
}
hanVScatsum->Fill(aE, cE);
if (ID[0].first < 1)
{
aID = pc.ch[ID[0].second];
cID = pc.ch[ID[1].second];
}
else
{
cID = pc.ch[ID[0].second];
aID = pc.ch[ID[1].second];
}
if (HitNonZero)
{
pw_contr.CalTrack(hitPos, aID, cID);
hZProj->Fill(pw_contr.GetZ0());
}
}
2024-01-29 19:10:12 -05:00
// ########################################################### Track constrcution
2024-01-31 15:24:03 -05:00
// ############################## DO THE KINEMATICS
2024-01-29 19:10:12 -05:00
return kTRUE;
}
void Analyzer::Terminate()
{
2024-01-29 19:10:12 -05:00
gStyle->SetOptStat("neiou");
TCanvas *canvas = new TCanvas("cANASEN", "ANASEN", 2000, 2000);
canvas->Divide(3, 3);
2024-01-29 19:10:12 -05:00
// hsx3VpcIndex->Draw("colz");
//=============================================== pad-1
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-01-29 19:10:12 -05:00
hsx3IndexVE->Draw("colz");
2024-01-29 19:10:12 -05:00
//=============================================== pad-2
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-01-29 19:10:12 -05:00
hqqqIndexVE->Draw("colz");
2024-01-29 19:10:12 -05:00
//=============================================== pad-3
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-01-29 19:10:12 -05:00
hpcIndexVE->Draw("colz");
2024-01-29 19:10:12 -05:00
//=============================================== pad-4
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-01-29 19:10:12 -05:00
hsx3Coin->Draw("colz");
2024-01-29 19:10:12 -05:00
//=============================================== pad-5
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-01-29 19:10:12 -05:00
canvas->cd(padID)->SetLogz(true);
2024-04-15 13:29:57 -04:00
hqqqCoin->Draw("colz");
2024-01-29 19:10:12 -05:00
//=============================================== pad-6
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-01-29 19:10:12 -05:00
hpcCoin->Draw("colz");
2024-01-29 19:10:12 -05:00
//=============================================== pad-7
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-01-29 19:10:12 -05:00
// hsx3VpcIndex ->Draw("colz");
hsx3VpcE->Draw("colz");
2024-04-15 13:29:57 -04:00
//=============================================== pad-8
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
2024-04-15 13:29:57 -04:00
// hqqqVpcIndex ->Draw("colz");
2024-04-15 13:29:57 -04:00
hqqqVpcE->Draw("colz");
//=============================================== pad-9
padID++;
2024-04-15 13:29:57 -04:00
// canvas->cd(padID)->DrawFrame(-50, -50, 50, 50);
// hqqqPolar->Draw("same colz pol");
2024-03-22 18:45:13 -04:00
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// hZProj->Draw();
hanVScatsum->Draw("colz");
TFile *outRoot = new TFile("Histograms.root", "RECREATE");
if (!outRoot->IsOpen())
{
std::cerr << "Error opening file for writing!" << std::endl;
return;
}
// Loop through histograms and write them to the ROOT file
for (int i = 0; i < 48; i++)
{
if (hPC_E[i] != nullptr)
{
hPC_E[i]->Write(); // Write histogram to file
}
}
outRoot->Close();
}