modified: .vscode/settings.json

modified:   Analyzer.C
This commit is contained in:
Vignesh Sitaraman 2025-01-27 09:51:25 -05:00
parent 42e093b104
commit 26e943adc8
2 changed files with 173 additions and 11 deletions

View File

@ -100,7 +100,8 @@
"PCPulser_All_new.C": "cpp",
"PosCal_2.C": "cpp",
"AutoFit.C": "cpp",
"Fitting.C": "cpp"
"Fitting.C": "cpp",
"PCGainMatch.C": "cpp"
},
"github-enterprise.uri": "https://fsunuc.physics.fsu.edu"
}

View File

@ -28,6 +28,9 @@ TH2F *hqqqVpcIndex;
TH2F *hqqqVpcE;
TH2F *hsx3VpcE;
TH2F *hanVScatsum;
TH2F *hanVScatsum_a[24];
TH1F *hAnodeMultiplicity;
int padID = 0;
SX3 sx3_contr;
@ -73,6 +76,14 @@ void Analyzer::Begin(TTree * /*tree*/)
hZProj = new TH1F("hZProj", "Z Projection", 200, -600, 600);
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400, 0, 10000, 400, 0, 16000);
hAnodeMultiplicity = new TH1F("hAnodeMultiplicity", "Number of Anodes/Event", 40, 0, 40);
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400, 0, 10000, 800, 0, 16000);
for (int i = 0; i < 24; i++)
{
TString histName = Form("hAnodeVsCathode_%d", i);
TString histTitle = Form("Anode %d vs Cathode Sum; Anode E; Cathode Sum E", i);
hanVScatsum_a[i] = new TH2F(histName, histTitle, 400, 0, 10000, 400, 0, 16000);
}
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
}
@ -298,10 +309,11 @@ Bool_t Analyzer::Process(Long64_t entry)
hpcCoin->Fill(pc.index[i], pc.index[j]);
}
}
// for( size_t i = 0; i < E.size(); i++) printf("%zu | %d %d \n", i, E[i].first, E[i].second );
// Calculate the crossover points and put them into an array
pwinstance.ConstructGeo();
Coord Crossover[24][24];
Coord Crossover[24][24][2];
TVector3 a, c, diff;
double a2, ac, c2, adiff, cdiff, denom, alpha, beta;
int index = 0;
@ -310,6 +322,11 @@ Bool_t Analyzer::Process(Long64_t entry)
a = pwinstance.An[i].first - pwinstance.An[i].second;
for (int j = 0; j < pwinstance.Ca.size(); j++)
{
// Ok so this method uses what is essentially th solution of 2 equations to find the point of intersection between the anode and cathode wires
// here a and c are the vectors of the anode and cathode wires respectively
// diff is the perpendicular vector between the anode and cathode wires
// The idea behind this is to then find the scalars alpha and beta that give a ratio between 0 and -1,
c = pwinstance.Ca[j].first - pwinstance.Ca[j].second;
diff = pwinstance.An[i].first - pwinstance.Ca[j].first;
a2 = a.Dot(a);
@ -320,19 +337,163 @@ Bool_t Analyzer::Process(Long64_t entry)
denom = a2 * c2 - ac * ac;
alpha = (ac * cdiff - c2 * adiff) / denom;
beta = (a2 * cdiff - ac * adiff) / denom;
Crossover[i][j].x = pwinstance.An[i].first.X() + alpha * a.X();
Crossover[i][j].y = pwinstance.An[i].first.Y() + alpha * a.Y();
Crossover[i][j].z = pwinstance.An[i].first.Z() + alpha * a.Z();
if (i == 23)
Crossover[i][j][1].x = pwinstance.An[i].first.X() + alpha * a.X();
Crossover[i][j][1].y = pwinstance.An[i].first.Y() + alpha * a.Y();
Crossover[i][j][1].z = pwinstance.An[i].first.Z() + alpha * a.Z();
//placeholder variable Crossover[i][j][2].x has nothing to do with the geometry of the crossover and is being used to store the alpha value,
//so that it can be used to sort "good" hits later
Crossover[i][j][2].x = alpha;
// if (i == 23)
// {
// if (abs(i - j) < 7 || abs(i - j) > 17)
// {
// if (alpha < 0 && alpha > -1)
// {
// printf("Anode and cathode indices and coord : %d %d %f %f %f %f\n", i, j, pwinstance.Ca[j].first.X(), pwinstance.Ca[j].first.Y(), pwinstance.Ca[j].first.Z(), alpha);
// printf("Crossover wires, points and alpha are : %f %f %f %f \n", Crossover[i][j].x, Crossover[i][j].y, Crossover[i][j].z, alpha);
// }
// }
// }
}
}
std::vector<std::pair<int, double>> anodeHits = {};
std::vector<std::pair<int, double>> cathodeHits = {};
int aID = 0;
int cID = 0;
float aE = 0;
float cE = 0;
// Define the excluded SX3 and QQQ channels
// std::unordered_set<int> excludeSX3 = {34, 35, 36, 37, 61, 62, 67, 73, 74, 75, 76, 77, 78, 79, 80, 93, 97, 100, 103, 108, 109, 110, 111, 112};
// std::unordered_set<int> excludeQQQ = {0, 17, 109, 110, 111, 112, 113, 119, 127, 128};
// inCuth=false;
// inCutl=false;
// inPCCut=false;
for (int i = 0; i < pc.multi; i++)
{
if (pc.e[i] > 50 && pc.multi < 7)
{
float aESum = 0;
float cESum = 0;
float aEMax = 0;
float cEMax = 0;
float aEnextMax = 0;
float cEnextMax = 0;
int aIDMax = 0;
int cIDMax = 0;
int aIDnextMax = 0;
int cIDnextMax = 0;
//creating a vector of pairs of anode and cathode hits that is sorted in order of decreasing energy
if (pc.index[i] < 24)
{
if (abs(i - j) < 7 || abs(i - j) > 17)
anodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
std::sort(anodeHits.begin(), anodeHits.end(), [](const std::pair<int, double> &a, const std::pair<int, double> &b)
{ return a.second > b.second; });
}
else if (pc.index[i] >= 24)
{
cathodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
std::sort(cathodeHits.begin(), cathodeHits.end(),[](const std::pair<int, double> &a, const std::pair<int, double> &b)
{ return a.second > b.second; });
}
for (int j = i + 1; j < pc.multi; j++)
{
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
hpcCoin->Fill(pc.index[i], pc.index[j]);
}
if (anodeHits.size() >= 1 && cathodeHits.size() >= 1)
{
for (const auto &anode : anodeHits)
{
if (alpha < 0 && alpha > -1)
aID = anode.first;
aE = anode.second;
aESum += aE;
if (aE > aEMax)
{
printf("Anode and cathode indices and coord : %d %d %f %f %f %f\n", i, j, pwinstance.Ca[j].first.X(), pwinstance.Ca[j].first.Y(), pwinstance.Ca[j].first.Z(), alpha);
printf("Crossover wires, points and alpha are : %f %f %f %f \n", Crossover[i][j].x, Crossover[i][j].y, Crossover[i][j].z, alpha);
aEMax = aE;
aIDMax = aID;
}
if (aE > aEnextMax && aE < aEMax)
{
aEnextMax = aE;
aIDnextMax = aID;
}
// printf("aID : %d, aE : %f\n", aID, aE);
}
// printf("aID : %d, aE : %f, cE : %f\n", aID, aE, cE);
for (const auto &cathode : cathodeHits)
{
cID = cathode.first;
cE = cathode.second;
if (cE > cEMax)
{
cEMax = cE;
cIDMax = cID;
}
if (cE > cEnextMax && cE < cEMax)
{
cEnextMax = cE;
cIDnextMax = cID;
}
cESum += cE;
}
// }
// inCuth = false;
// inCutl = false;
// inPCCut = false;
// for(int j=i+1;j<pc.multi;j++){
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
// hpcCoin->Fill(pc.index[i], pc.index[j]);
// }
// Check if the accumulated energies are within the defined ranges
// if (AnCatSum_high && AnCatSum_high->IsInside(aESum, cESum)) {
// inCuth = true;
// }
// if (AnCatSum_low && AnCatSum_low->IsInside(aESum, cESum)) {
// inCutl = true;
// }
// Fill histograms based on the cut conditions
// if (inCuth && inPCCut) {
// hanVScatsum_hcut->Fill(aESum, cESum);
// }
// if (inCutl && inPCCut) {
// hanVScatsum_lcut->Fill(aESum, cESum);
// }
// for(auto anode : anodeHits){
// float aE = anode.second;
// aESum += aE;
// if(inPCCut){
hanVScatsum->Fill(aESum, cESum);
// }
if (aID < 24 && aE > 50)
{
hanVScatsum_a[aID]->Fill(aE, cESum);
}
// }
// Fill histograms for the `pc` data
hpcIndexVE->Fill(pc.index[i], pc.e[i]);
// if(inPCCut){
hAnodeMultiplicity->Fill(anodeHits.size());
// }
}
}
}