move out SX3 and PW classes

This commit is contained in:
Ryan Tang 2024-02-02 15:08:50 -05:00
parent 9d7780416d
commit 50b95b33ed
5 changed files with 516 additions and 428 deletions

10
.vscode/settings.json vendored
View File

@ -78,6 +78,14 @@
"variant": "cpp", "variant": "cpp",
"bitset": "cpp", "bitset": "cpp",
"forward_list": "cpp", "forward_list": "cpp",
"anasenMS.C": "cpp" "anasenMS.C": "cpp",
"*.icc": "cpp",
"any": "cpp",
"cfenv": "cpp",
"csignal": "cpp",
"regex": "cpp",
"scoped_allocator": "cpp",
"shared_mutex": "cpp",
"valarray": "cpp"
} }
} }

View File

@ -13,123 +13,43 @@
#include "TPolyLine3D.h" #include "TPolyLine3D.h"
#include "TRandom.h" #include "TRandom.h"
struct SX3{ #include "ClassSX3.h"
short id = -1; // -1 when no hit #include "ClassPW.h"
short chUp;
short chDown;
short chBack;
double zFrac; // from +1 (downstream) to -1 (upstream)
double eUp;
double eDown;
double eBack;
TVector3 hitPos;
void CalZFrac(){
zFrac = (eUp - eDown)/(eUp + eDown);
}
void Print(){
if( id == -1 ){
printf("Did not hit any SX3.\n");
}else{
printf("ID: %d, U,D,B: %d %d %d| zFrac : %.2f\n", id, chUp, chDown, chBack, zFrac);
printf("Hit Pos: %.2f, %.2f, %.2f\n", hitPos.X(), hitPos.Y(), hitPos.Z());
}
}
};
struct PW{ // proportional wire
// the nearest wire
short anode1 = -1;
short cathode1 = -1;
double anodeDis1 = 999999999;
double cathodeDis1 = 999999999;
// the 2nd nearest wire
short anode2 = -1;
short cathode2 = -1;
double anodeDis2 = 999999999;
double cathodeDis2 = 999999999;
void Print(){
printf(" The nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", anode1, anodeDis1, cathode1, cathodeDis1);
printf(" The 2nd nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", anode2, anodeDis2, cathode2, cathodeDis2);
}
};
class ANASEN{ class ANASEN{
public: public:
ANASEN(); ANASEN();
~ANASEN(); ~ANASEN();
void CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose = false);
TVector3 CalSX3Pos(unsigned short ID, unsigned short chUp, unsigned short chDown, unsigned short chBack, float eUp = 0, float eDown = 0 );
TVector3 GetTrackPos() const {return trackPos;}
TVector3 GetTrackVec() const {return trackVec;}
double GetTrackTheta() const {return trackVec.Theta();}
double GetTrackPhi() const {return trackVec.Phi();}
void DrawAnasen(int anodeID1 = -1, int anodeID2 = -1, int cathodeID1 = -1, int cathodeID2 = -1, int sx3ID = -1, bool DrawQQQ = false );
void DrawDeducedTrack(TVector3 sx3Pos, int anodeID, int cathodeID);
//Simulation
SX3 FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose = false);
PW FindWireID(TVector3 pos, TVector3 direction, bool verbose = false);
void DrawTrack(TVector3 pos, TVector3 direction, bool drawEstimatedTrack = false); void DrawTrack(TVector3 pos, TVector3 direction, bool drawEstimatedTrack = false);
void DrawDeducedTrack(TVector3 sx3Pos, int anodeID, int cathodeID);
std::pair<TVector3,TVector3> GetAnode(unsigned short id) const{return An[id];}; void DrawAnasen(int anodeID1 = -1,
std::pair<TVector3,TVector3> GetCathode(unsigned short id) const{return Ca[id];}; int anodeID2 = -1,
int cathodeID1 = -1,
int cathodeID2 = -1,
int sx3ID = -1,
bool DrawQQQ = false );
private: private:
const int nWire = 24; PW pw;
const int wireShift = 3; SX3 sx3;
const float zLen = 380; //mm
const float radiusA = 37;
const float radiusC = 43;
std::vector<std::pair<TVector3,TVector3>> An; // the anode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> Ca; // the cathode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> SDn; // coners of the SX3 0-11, z = mid point
std::vector<std::pair<TVector3,TVector3>> SUp; // coners of the SX3 12-23, z = mid point
std::vector<TVector3> SNorml; // normal of the SX3 (outward)
void CalGeometry();
TVector3 trackPos;
TVector3 trackVec;
double trackPosErrorZ; // mm
TVector3 tracePosErrorXY; // the mag is the size of the error
TVector3 trackVecErrorA; // error vector prependicular to the Anode-Pos plan
TVector3 trackVecErrorC; // error vector prependicular to the Cathode-Pos plan
const int nSX3 = 12;
const float sx3Radius = 88;
const float sx3Width = 40;
const float sx3Length = 75;
const float sx3Gap = 46;
const float qqqR1 = 50; const float qqqR1 = 50;
const float qqqR2 = 100; const float qqqR2 = 100;
const float qqqZPos = sx3Gap/2 + sx3Length + 30; const float qqqZPos = 23 + 75 + 30;
void CalGeometry();
// int geomID;
TGeoManager *geom; TGeoManager *geom;
TGeoVolume *worldBox; TGeoVolume *worldBox;
void Construct3DModel(int anodeID1 = -1, int anodeID2 = -1, int cathodeID1 = -1, int cathodeID2 = -1, int sx3ID = -1, bool DrawQQQ = true); void Construct3DModel(int anodeID1 = -1,
int anodeID2 = -1,
double Distance(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2); int cathodeID1 = -1,
std::pair<double, double> Intersect(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2, bool verbose = false); int cathodeID2 = -1,
int sx3ID = -1,
bool DrawQQQ = true);
}; };
@ -138,7 +58,6 @@ inline ANASEN::ANASEN(){
CalGeometry(); CalGeometry();
// geomID = 0;
geom = nullptr; geom = nullptr;
worldBox = nullptr; worldBox = nullptr;
@ -152,61 +71,8 @@ inline ANASEN::~ANASEN(){
//!============================================== //!==============================================
inline void ANASEN::CalGeometry(){ inline void ANASEN::CalGeometry(){
std::pair<TVector3, TVector3> p1; // anode sx3.ConstructGeo();
std::pair<TVector3, TVector3> q1; // cathode pw.ConstructGeo();
//anode and cathode start at pos-Y axis and count in left-Hand
//anode wire shift is right-hand.
//cathode wire shift is left-hand.
for(int i = 0; i < nWire; i++ ){
// Anode rotate right-hand
p1.first.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
zLen/2);
p1.second.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * (-i + wireShift) + TMath::PiOver2()),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * (-i + wireShift) + TMath::PiOver2()),
-zLen/2);
An.push_back(p1);
// Cathod rotate left-hand
q1.first.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
radiusC * TMath::Sin( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
zLen/2);
q1.second.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() / nWire * (- i - wireShift) + TMath::PiOver2()),
radiusC * TMath::Sin( TMath::TwoPi() / nWire * (- i - wireShift) + TMath::PiOver2()),
-zLen/2);
Ca.push_back(q1);
}
// SX3 is couned in left-hand, started at neg-Y axis
TVector3 sa, sb, sc, sn;
for(int i = 0; i < nSX3; i++){
sa.SetXYZ( sx3Radius, -sx3Width/2, sx3Gap/2 + sx3Length/2 );
sb.SetXYZ( sx3Radius, sx3Width/2, sx3Gap/2 + sx3Length/2 );
double rot = TMath::TwoPi() / nSX3 * (-i - 0.5) - TMath::PiOver2();
sa.RotateZ( rot );
sb.RotateZ( rot );
SDn.push_back(std::pair(sa,sb));
sc.SetXYZ( sx3Radius, -sx3Width/2, sx3Gap/2 );
sc.RotateZ( rot );
sn = ((sc-sa).Cross(sb-sa)).Unit();
SNorml.push_back(sn);
sa.SetXYZ( sx3Radius, -sx3Width/2, -sx3Gap/2 - sx3Length/2 );
sb.SetXYZ( sx3Radius, sx3Width/2, -sx3Gap/2 - sx3Length/2 );
sa.RotateZ( rot );
sb.RotateZ( rot );
SUp.push_back(std::pair(sa,sb));
}
} }
@ -245,83 +111,73 @@ inline void ANASEN::Construct3DModel(int anodeID1, int anodeID2, int cathodeID1,
worldBox->AddNode(axisZ, 1, new TGeoTranslation(0, 0, 5)); worldBox->AddNode(axisZ, 1, new TGeoTranslation(0, 0, 5));
//.......... convert to wire center dimensions //.......... convert to wire center dimensions
double dAngle = wireShift * TMath::TwoPi() / nWire; TGeoVolume *pcA = geom->MakeTube("tub1", Al, 0, 0.01, pw.GetAnodeLength()/2);
double wireALength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusA * TMath::Sin(dAngle/2),2) );
// double radiusAnew = radiusA * TMath::Cos( dAngle / 2.);
// double wireATheta = TMath::ATan2( 2* radiusA * TMath::Sin( dAngle / 2.), zLen);
TGeoVolume *pcA = geom->MakeTube("tub1", Al, 0, 0.01, wireALength/2);
pcA->SetLineColor(4); pcA->SetLineColor(4);
int startID = 0; int startID = 0;
int endID = nWire - 1; int endID = pw.GetNumWire() - 1;
if( anodeID1 >= 0 && anodeID2 >= 0 ){ if( anodeID1 >= 0 && anodeID2 >= 0 ){
startID = anodeID1; startID = anodeID1;
endID = anodeID2; endID = anodeID2;
if( anodeID1 > anodeID2 ) { if( anodeID1 > anodeID2 ) {
endID = nWire + anodeID2; endID = pw.GetNumWire() + anodeID2;
} }
} }
for( int i = startID; i <= endID; i++){ for( int i = startID; i <= endID; i++){
TVector3 a = (An[i].first + An[i].second) * 0.5; TVector3 a = pw.GetAnodneMid(i);
double wireATheta = (An[i].first - An[i].second).Theta()* TMath::RadToDeg(); double wireTheta = pw.GetAnodeTheta(i) * TMath::RadToDeg();
double wireAPhi = (An[i].first - An[i].second).Phi() * TMath::RadToDeg() + 90; double wirePhi = pw.GetAnodePhi(i) * TMath::RadToDeg() + 90;
worldBox->AddNode(pcA, i+1, new TGeoCombiTrans( a.X(), worldBox->AddNode(pcA, i+1, new TGeoCombiTrans( a.X(),
a.Y(), a.Y(),
a.Z(), a.Z(),
new TGeoRotation("rot1", wireAPhi , wireATheta, 0.))); new TGeoRotation("rot1", wirePhi, wireTheta, 0.)));
} }
double wireCLength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusC * TMath::Sin(dAngle/2),2) ); TGeoVolume *pcC = geom->MakeTube("tub2", Al, 0, 0.01, pw.GetCathodeLength()/2);
// double radiusCnew = radiusC * TMath::Cos( dAngle / 2.);
// double wireCTheta = TMath::ATan2( 2* radiusC * TMath::Sin( dAngle / 2.), zLen);
TGeoVolume *pcC = geom->MakeTube("tub2", Al, 0, 0.01, wireCLength/2);
pcC->SetLineColor(6); pcC->SetLineColor(6);
startID = 0; startID = 0;
endID = nWire - 1; endID = pw.GetNumWire() - 1;
if( cathodeID1 >= 0 && cathodeID2 >= 0 ){ if( cathodeID1 >= 0 && cathodeID2 >= 0 ){
startID = cathodeID1; startID = cathodeID1;
endID = cathodeID2; endID = cathodeID2;
if( cathodeID1 > cathodeID2 ) { if( cathodeID1 > cathodeID2 ) {
endID = nWire + cathodeID2; endID = pw.GetNumWire() + cathodeID2;
} }
} }
for( int i = startID; i <= endID; i++){ for( int i = startID; i <= endID; i++){
TVector3 a = (Ca[i].first + Ca[i].second) * 0.5; TVector3 a = pw.GetCathodneMid(i);
double wireATheta = (Ca[i].first - Ca[i].second).Theta()* TMath::RadToDeg(); double wireTheta = pw.GetCathodeTheta(i) * TMath::RadToDeg();
double wireAPhi = (Ca[i].first - Ca[i].second).Phi() * TMath::RadToDeg() + 90; double wirePhi = pw.GetCathodePhi(i) * TMath::RadToDeg() + 90;
worldBox->AddNode(pcC, i+1, new TGeoCombiTrans( a.X(), worldBox->AddNode(pcC, i+1, new TGeoCombiTrans( a.X(),
a.Y(), a.Y(),
a.Z(), a.Z(),
new TGeoRotation("rot1", wireAPhi , wireATheta, 0.))); new TGeoRotation("rot1", wirePhi , wireTheta, 0.)));
} }
TGeoVolume * sx3 = geom->MakeBox("box", Al, 0.1, sx3Width/2, sx3Length/2); TGeoVolume * sx3Det = geom->MakeBox("box", Al, 0.1, sx3.GetWidth()/2, sx3.GetLength()/2);
sx3->SetLineColor(kGreen+3); sx3Det->SetLineColor(kGreen+3);
for( int i = 0; i < nSX3; i++){ for( int i = 0; i < sx3.GetNumDet(); i++){
if( sx3ID != -1 && i != sx3ID ) continue; if( sx3ID != -1 && i != sx3ID ) continue;
TVector3 aUp = (SUp[i].first + SUp[i].second)*0.5; // center of the SX3 upstream TVector3 aUp = sx3.GetUpMid(i); // center of the SX3 upstream
TVector3 aDn = (SDn[i].first + SDn[i].second)*0.5; // center of the SX3 Downstream TVector3 aDn = sx3.GetDnMid(i); // center of the SX3 Downstream
double phi = (SUp[i].second - SUp[i].first).Phi() * TMath::RadToDeg() + 90; double phi = sx3.GetDetPhi(i) * TMath::RadToDeg() + 90;
worldBox->AddNode(sx3, 2*i+1., new TGeoCombiTrans( aUp.X(), worldBox->AddNode(sx3Det, 2*i+1., new TGeoCombiTrans( aUp.X(),
aUp.Y(), aUp.Y(),
aUp.Z(), aUp.Z(),
new TGeoRotation("rot1", phi, 0., 0.))); new TGeoRotation("rot1", phi, 0., 0.)));
worldBox->AddNode(sx3, 2*i+1., new TGeoCombiTrans( aDn.X(), worldBox->AddNode(sx3Det, 2*i+1., new TGeoCombiTrans( aDn.X(),
aDn.Y(), aDn.Y(),
aDn.Z(), aDn.Z(),
new TGeoRotation("rot1", phi, 0., 0.))); new TGeoRotation("rot1", phi, 0., 0.)));
} }
if( DrawQQQ ){ if( DrawQQQ ){
@ -337,167 +193,6 @@ inline void ANASEN::Construct3DModel(int anodeID1, int anodeID2, int cathodeID1,
} }
//!============================================== Aux Functions
inline double ANASEN::Distance(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2){
TVector3 na = a1 - a2;
TVector3 nb = b1 - b2;
TVector3 nd = (na.Cross(nb)).Unit();
return TMath::Abs(nd.Dot(a1-b2));
}
inline std::pair<double, double> ANASEN::Intersect(TVector3 An, TVector3 p2, TVector3 q1, TVector3 q2, bool verbose){
//see https://nukephysik101.wordpress.com/2023/12/30/intersect-between-2-line-segments/
//zero all z-component
TVector3 a0 = An; a0.SetZ(0);
TVector3 a1 = p2; a1.SetZ(0);
TVector3 b0 = q1; b0.SetZ(0);
TVector3 b1 = q2; b1.SetZ(0);
double A = ((b0-b1).Cross(a0-a1)).Mag();
double h = ((b0-a0).Cross(b1-a0)).Z()/ A;
double k = ((a1-b0).Cross(a0-b0)).Z()/ A;
if( verbose ) printf(" ----h, k : %f, %f\n", h, k);
return std::pair(h,k);
}
//!============================================== Given a position and a direction, find wireID and SX3 position
inline PW ANASEN::FindWireID(TVector3 pos, TVector3 direction, bool verbose ){
PW pw;
double phi = direction.Phi();
for( int i = 0; i < nWire; i++){
double disA = 99999999;
double disC = 99999999;
double phiS = An[i].first.Phi() - TMath::PiOver4();
double phiL = An[i].second.Phi() + TMath::PiOver4();
// printf("A%2d: %f %f | %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg(), phi * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) {
phiL = phiL + TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if( phi < 0 && phiS > phiL ) {
phiS = phiS - TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if( phiS < phi && phi < phiL) {
disA = Distance( pos, pos + direction, An[i].first, An[i].second);
if( disA < pw.anodeDis1 ){
pw.anodeDis1 = disA;
pw.anode1 = i;
}
}
phiS = Ca[i].second.Phi()- TMath::PiOver4();
phiL = Ca[i].first.Phi() + TMath::PiOver4();
// printf("C%2d: %f %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) {
phiL = phiL + TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if( phi < 0 && phiS > phiL ) {
phiS = phiS - TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if(phiS < phi && phi < phiL) {
disC = Distance( pos, pos + direction, Ca[i].first, Ca[i].second);
if( disC < pw.cathodeDis1 ){
pw.cathodeDis1 = disC;
pw.cathode1 = i;
}
}
if(verbose) printf(" %2d | %8.2f, %8.2f\n", i, disA, disC);
}
//==== find the 2nd nearest wire
double haha1 = Distance( pos, pos + direction, An[pw.anode1-1].first, An[pw.anode1-1].second);
double haha2 = Distance( pos, pos + direction, An[pw.anode1+1].first, An[pw.anode1+1].second);
if( haha1 < haha2){
pw.anode2 = pw.anode1-1;
pw.anodeDis2 = haha1;
}else{
pw.anode2 = pw.anode1+1;
pw.anodeDis2 = haha2;
}
haha1 = Distance( pos, pos + direction, Ca[pw.cathode1-1].first, Ca[pw.cathode1-1].second);
haha2 = Distance( pos, pos + direction, Ca[pw.cathode1+1].first, Ca[pw.cathode1+1].second);
if( haha1 < haha2){
pw.cathode2 = pw.cathode1-1;
pw.cathodeDis2 = haha1;
}else{
pw.cathode2 = pw.cathode1+1;
pw.cathodeDis2 = haha2;
}
if( verbose ) pw.Print();
return pw;
}
inline SX3 ANASEN::FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose){
SX3 haha;
haha.id = -1;
for( int i = 0 ; i < nSX3; i++){
if(verbose) printf(" %d ", i);
std::pair<double, double> frac = Intersect( pos, pos + direction, SDn[i].first, SDn[i].second, verbose);
if( frac.second < 0 || frac.second > 1 ) continue;
haha.hitPos = pos + frac.first * direction;
double dis = haha.hitPos.Dot(SNorml[i]);
if(verbose) {
printf("reduced distance : %f\n", dis);
printf(" %d*", (i+1)%nSX3);
Intersect( pos, pos + direction, SDn[(i+1)%nSX3].first, SDn[(i+1)%nSX3].second, verbose);
}
if( TMath::Abs(dis - sx3Radius) > 0.1 ) continue;
haha.chDown = 2 * TMath::Floor(frac.second * 4);
haha.chUp = haha.chDown + 1;
double zPos = haha.hitPos.Z();
if( (sx3Gap/2 < zPos && zPos < sx3Gap/2 + sx3Length ) || (-sx3Gap/2 - sx3Length < zPos && zPos < -sx3Gap/2 ) ){
haha.id = zPos > 0 ? i : i + 12;
haha.zFrac = zPos > 0 ? (zPos - sx3Gap/2. - sx3Length/2.)/sx3Length : (zPos - ( - sx3Gap/2. - sx3Length/2.) )/sx3Length ;
haha.chBack = TMath::Floor( (haha.zFrac + 0.5) * 4 ) + 8;
if( verbose) haha.Print();
return haha;
}else{
if( verbose ) printf(" zPos out of sensitive region\n");
}
}
if( verbose) haha.Print();
return haha;
}
//!============================================== Drawing functions //!============================================== Drawing functions
inline void ANASEN::DrawAnasen(int anodeID1, int anodeID2, int cathodeID1, int cathodeID2, int sx3ID, bool DrawQQQ ){ inline void ANASEN::DrawAnasen(int anodeID1, int anodeID2, int cathodeID1, int cathodeID2, int sx3ID, bool DrawQQQ ){
@ -511,21 +206,17 @@ inline void ANASEN::DrawAnasen(int anodeID1, int anodeID2, int cathodeID1, int c
inline void ANASEN::DrawTrack(TVector3 pos, TVector3 direction, bool drawEstimatedTrack){ inline void ANASEN::DrawTrack(TVector3 pos, TVector3 direction, bool drawEstimatedTrack){
PW pw = FindWireID(pos, direction); pw.FindWireID(pos, direction);
sx3.FindSX3Pos(pos, direction);
SX3 sx3 = FindSX3Pos(pos, direction); std::pair<short, short> wireID = pw.GetNearestID();
int a1 = pw.anode1 - 1; if( a1 < 0 ) a1 += nWire; Construct3DModel(wireID.first, wireID.first, wireID.second, wireID.second, -1, false);
int b1 = pw.cathode1 - 1; if( b1 < 0 ) b1 += nWire;
//Construct3DModel(a1, id.first+1, b1, id.second+1, false);
Construct3DModel(pw.anode1, pw.anode1, pw.cathode1, pw.cathode1, -1, false);
double theta = direction.Theta() * TMath::RadToDeg(); double theta = direction.Theta() * TMath::RadToDeg();
double phi = direction.Phi() * TMath::RadToDeg(); double phi = direction.Phi() * TMath::RadToDeg();
// printf("Theta, Phi = %.2f %.2f \n", theta, phi); // printf("Theta, Phi = %.2f %.2f \n", theta, phi);
// pos.Print(); // pos.Print();
TGeoVolume * Track = geom->MakeTube("track", 0, 0, 0.1, 150.); TGeoVolume * Track = geom->MakeTube("track", 0, 0, 0.1, 150.);
Track->SetLineColor(kRed); Track->SetLineColor(kRed);
worldBox->AddNode(Track, 1, new TGeoCombiTrans( pos.X(), pos.Y(), pos.Z(), new TGeoRotation("rotA", phi + 90, theta, 0.))); worldBox->AddNode(Track, 1, new TGeoCombiTrans( pos.X(), pos.Y(), pos.Z(), new TGeoRotation("rotA", phi + 90, theta, 0.)));
@ -534,20 +225,23 @@ inline void ANASEN::DrawTrack(TVector3 pos, TVector3 direction, bool drawEstima
startPos->SetLineColor(kBlack); startPos->SetLineColor(kBlack);
worldBox->AddNode(startPos, 3, new TGeoCombiTrans( pos.X(), pos.Y(), pos.Z(), new TGeoRotation("rotA", 0, 0, 0.))); worldBox->AddNode(startPos, 3, new TGeoCombiTrans( pos.X(), pos.Y(), pos.Z(), new TGeoRotation("rotA", 0, 0, 0.)));
if( sx3.id >= 0 ){ if( sx3.GetID() >= 0 ){
TGeoVolume * hit = geom->MakeSphere("hitpos", 0, 0, 3); TGeoVolume * hit = geom->MakeSphere("hitpos", 0, 0, 3);
hit->SetLineColor(kRed); hit->SetLineColor(kRed);
worldBox->AddNode(hit, 2, new TGeoCombiTrans( sx3.hitPos.X(), sx3.hitPos.Y(), sx3.hitPos.Z(), new TGeoRotation("rotA", 0, 0, 0.)));
TVector3 hitPos = sx3.GetHitPos();
worldBox->AddNode(hit, 2, new TGeoCombiTrans( hitPos.X(), hitPos.Y(), hitPos.Z(), new TGeoRotation("rotA", 0, 0, 0.)));
if( drawEstimatedTrack ){ if( drawEstimatedTrack ){
CalTrack(sx3.hitPos, pw.anode1, pw.cathode1, true); pw.CalTrack(hitPos, wireID.first, wireID.second, true);
double thetaDeduce = trackVec.Theta() * TMath::RadToDeg(); double thetaDeduce = pw.GetTrackTheta() * TMath::RadToDeg();
double phiDeduce = trackVec.Phi() * TMath::RadToDeg(); double phiDeduce = pw.GetTrackPhi() * TMath::RadToDeg();
TGeoVolume * trackDeduce = geom->MakeTube("trackDeduce", 0, 0, 0.1, 100.); TGeoVolume * trackDeduce = geom->MakeTube("trackDeduce", 0, 0, 0.1, 100.);
trackDeduce->SetLineColor(kOrange); trackDeduce->SetLineColor(kOrange);
worldBox->AddNode(trackDeduce, 1, new TGeoCombiTrans( sx3.hitPos.X(), sx3.hitPos.Y(), sx3.hitPos.Z(), new TGeoRotation("rotA", phiDeduce + 90, thetaDeduce, 0.))); worldBox->AddNode(trackDeduce, 1, new TGeoCombiTrans( hitPos.X(), hitPos.Y(), hitPos.Z(), new TGeoRotation("rotA", phiDeduce + 90, thetaDeduce, 0.)));
} }
@ -561,12 +255,12 @@ inline void ANASEN::DrawTrack(TVector3 pos, TVector3 direction, bool drawEstima
inline void ANASEN::DrawDeducedTrack(TVector3 sx3Pos, int anodeID, int cathodeID){ inline void ANASEN::DrawDeducedTrack(TVector3 sx3Pos, int anodeID, int cathodeID){
CalTrack(sx3Pos, anodeID, cathodeID); pw.CalTrack(sx3Pos, anodeID, cathodeID);
Construct3DModel(anodeID, anodeID, cathodeID, cathodeID, -1, false); Construct3DModel(anodeID, anodeID, cathodeID, cathodeID, -1, false);
double theta = trackVec.Theta() * TMath::RadToDeg(); double theta = pw.GetTrackTheta() * TMath::RadToDeg();
double phi = trackVec.Phi() * TMath::RadToDeg(); double phi = pw.GetTrackPhi() * TMath::RadToDeg();
TGeoVolume * Track = geom->MakeTube("axisX", 0, 0, 0.1, 100.); TGeoVolume * Track = geom->MakeTube("axisX", 0, 0, 0.1, 100.);
Track->SetLineColor(kRed); Track->SetLineColor(kRed);
@ -576,63 +270,11 @@ inline void ANASEN::DrawDeducedTrack(TVector3 sx3Pos, int anodeID, int cathodeI
hit->SetLineColor(kRed); hit->SetLineColor(kRed);
worldBox->AddNode(hit, 2, new TGeoCombiTrans( sx3Pos.X(), sx3Pos.Y(), sx3Pos.Z(), new TGeoRotation("rotA", 0, 0, 0.))); worldBox->AddNode(hit, 2, new TGeoCombiTrans( sx3Pos.X(), sx3Pos.Y(), sx3Pos.Z(), new TGeoRotation("rotA", 0, 0, 0.)));
geom->CloseGeometry(); geom->CloseGeometry();
geom->SetVisLevel(4); geom->SetVisLevel(4);
worldBox->Draw("ogle"); worldBox->Draw("ogle");
} }
//!============================================== Duduce trace from experiment
inline void ANASEN::CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose){
trackPos = sx3Pos;
TVector3 n1 = (An[anodeID].first - An[anodeID].second).Cross((sx3Pos - An[anodeID].second)).Unit();
TVector3 n2 = (Ca[cathodeID].first - Ca[cathodeID].second).Cross((sx3Pos - Ca[cathodeID].second)).Unit();
// if the handiness of anode and cathode revered, it should be n2 cross n1
trackVec = (n2.Cross(n1)).Unit();
if( verbose ) printf("Theta, Phi = %f, %f \n", trackVec.Theta() *TMath::RadToDeg(), trackVec.Phi()*TMath::RadToDeg());
}
inline TVector3 ANASEN::CalSX3Pos(unsigned short ID, unsigned short chUp, unsigned short chDown, unsigned short chBack, float eUp, float eDown){
TVector3 haha;
if( (chUp - chDown) != 1 || (chDown % 2) != 0) return haha;
int reducedID = ID % nSX3;
TVector3 sa, sb;
if( ID < nSX3 ){ //down
sa = SDn[reducedID].second;
sb = SDn[reducedID].first;
}else{
sa = SUp[reducedID].second;
sb = SUp[reducedID].first;
}
haha.SetX( (sb.X() - sa.X()) * chUp/8 + sa.X());
haha.SetY( (sb.Y() - sa.Y()) * chUp/8 + sa.Y());
if( eUp == 0 || eDown == 0 ){
haha.SetZ( sa.Z() + (2*(chBack - 7)-1) * sx3Length / 8 );
}else{
double frac = (eUp - eDown)/(eUp + eDown); // from +1 (downstream) to -1 (upstream)
double zPos = sa.Z() + sx3Length * frac/2;
haha.SetZ( zPos );
}
return haha;
}
#endif #endif

214
Armory/ClassPW.h Normal file
View File

@ -0,0 +1,214 @@
#ifndef ClassPW_h
#define ClassPW_h
#include <cstdio>
#include <TMath.h>
#include <TVector3.h>
class PW{ // proportional wire
public:
PW(){ Clear(); };
~PW(){};
std::pair<short, short> GetNearestID() const {return std::pair(anode1, cathode1);}
std::pair<double, double> GetNearestDistance() const {return std::pair(anodeDis1,cathodeDis1);}
std::pair<short, short> Get2ndNearestID() const {return std::pair(anode2,cathode2);}
std::pair<double, double> Get2ndNearestDistance() const {return std::pair(anodeDis2,cathodeDis2);}
TVector3 GetTrackPos() const {return trackPos;}
TVector3 GetTrackVec() const {return trackVec;}
double GetTrackTheta() const {return trackVec.Theta();}
double GetTrackPhi() const {return trackVec.Phi();}
int GetNumWire() const {return nWire;}
double GetDeltaAngle() const {return dAngle;}
double GetAnodeLength() const {return anodeLength;}
double GetCathodeLength() const {return cathodeLength;}
TVector3 GetAnodeDn(short id) const {return An[id].first;}
TVector3 GetAnodeUp(short id) const {return An[id].second;}
TVector3 GetCathodeDn(short id) const {return Ca[id].first;}
TVector3 GetCathodeUp(short id) const {return Ca[id].second;}
TVector3 GetAnodneMid(short id) const {return (An[id].first + An[id].second) * 0.5; }
double GetAnodeTheta(short id) const {return (An[id].first - An[id].second).Theta();}
double GetAnodePhi(short id) const {return (An[id].first - An[id].second).Phi();}
TVector3 GetCathodneMid(short id) const {return (Ca[id].first + Ca[id].second) * 0.5; }
double GetCathodeTheta(short id) const {return (Ca[id].first - Ca[id].second).Theta();}
double GetCathodePhi(short id) const {return (Ca[id].first - Ca[id].second).Phi();}
void Clear();
void ConstructGeo();
void FindWireID(TVector3 pos, TVector3 direction, bool verbose = false);
void CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose = false);
void Print(){
printf(" The nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", anode1, anodeDis1, cathode1, cathodeDis1);
printf(" The 2nd nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", anode2, anodeDis2, cathode2, cathodeDis2);
}
private:
// the nearest wire
short anode1;
short cathode1;
double anodeDis1;
double cathodeDis1;
// the 2nd nearest wire
short anode2;
short cathode2;
double anodeDis2;
double cathodeDis2;
TVector3 trackPos;
TVector3 trackVec;
const int nWire = 24;
const int wireShift = 3;
const float zLen = 380; //mm
const float radiusA = 37;
const float radiusC = 43;
double dAngle;
double anodeLength;
double cathodeLength;
std::vector<std::pair<TVector3,TVector3>> An; // the anode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> Ca; // the cathode wire position vector in space
double Distance(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2){
TVector3 na = a1 - a2;
TVector3 nb = b1 - b2;
TVector3 nd = (na.Cross(nb)).Unit();
return TMath::Abs(nd.Dot(a1-b2));
}
};
inline void PW::Clear(){
anode1 = -1;
cathode1 = -1;
anodeDis1 = 999999999;
cathodeDis1 = 999999999;
anode2 = -1;
cathode2 = -1;
anodeDis2 = 999999999;
cathodeDis2 = 999999999;
}
inline void PW::ConstructGeo(){
std::pair<TVector3, TVector3> p1; // anode
std::pair<TVector3, TVector3> q1; // cathode
//anode and cathode start at pos-Y axis and count in left-Hand
//anode wire shift is right-hand.
//cathode wire shift is left-hand.
for(int i = 0; i < nWire; i++ ){
// Anode rotate right-hand
p1.first.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
zLen/2);
p1.second.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * (-i + wireShift) + TMath::PiOver2()),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * (-i + wireShift) + TMath::PiOver2()),
-zLen/2);
An.push_back(p1);
// Cathod rotate left-hand
q1.first.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
radiusC * TMath::Sin( TMath::TwoPi() / nWire * (-i) + TMath::PiOver2()),
zLen/2);
q1.second.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() / nWire * (- i - wireShift) + TMath::PiOver2()),
radiusC * TMath::Sin( TMath::TwoPi() / nWire * (- i - wireShift) + TMath::PiOver2()),
-zLen/2);
Ca.push_back(q1);
}
dAngle = wireShift * TMath::TwoPi() / nWire;
anodeLength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusA * TMath::Sin(dAngle/2),2) );
cathodeLength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusC * TMath::Sin(dAngle/2),2) );
}
inline void PW::FindWireID(TVector3 pos, TVector3 direction, bool verbose ){
Clear();
double phi = direction.Phi();
for( int i = 0; i < nWire; i++){
double disA = 99999999;
double disC = 99999999;
double phiS = An[i].first.Phi() - TMath::PiOver4();
double phiL = An[i].second.Phi() + TMath::PiOver4();
// printf("A%2d: %f %f | %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg(), phi * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) phiL = phiL + TMath::TwoPi();
if( phi < 0 && phiS > phiL ) phiS = phiS - TMath::TwoPi();
if( phiS < phi && phi < phiL) {
disA = Distance( pos, pos + direction, An[i].first, An[i].second);
if( disA < anodeDis1 ){
anodeDis1 = disA;
anode1 = i;
}
}
phiS = Ca[i].second.Phi()- TMath::PiOver4();
phiL = Ca[i].first.Phi() + TMath::PiOver4();
// printf("C%2d: %f %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) phiL = phiL + TMath::TwoPi();
if( phi < 0 && phiS > phiL ) phiS = phiS - TMath::TwoPi();
if(phiS < phi && phi < phiL) {
disC = Distance( pos, pos + direction, Ca[i].first, Ca[i].second);
if( disC < cathodeDis1 ){
cathodeDis1 = disC;
cathode1 = i;
}
}
if(verbose) printf(" %2d | %8.2f, %8.2f\n", i, disA, disC);
}
//==== find the 2nd nearest wire
double haha1 = Distance( pos, pos + direction, An[anode1-1].first, An[anode1-1].second);
double haha2 = Distance( pos, pos + direction, An[anode1+1].first, An[anode1+1].second);
if( haha1 < haha2){
anode2 = anode1-1;
anodeDis2 = haha1;
}else{
anode2 = anode1+1;
anodeDis2 = haha2;
}
haha1 = Distance( pos, pos + direction, Ca[cathode1-1].first, Ca[cathode1-1].second);
haha2 = Distance( pos, pos + direction, Ca[cathode1+1].first, Ca[cathode1+1].second);
if( haha1 < haha2){
cathode2 = cathode1-1;
cathodeDis2 = haha1;
}else{
cathode2 = cathode1+1;
cathodeDis2 = haha2;
}
if( verbose ) Print();
}
inline void PW::CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose){
trackPos = sx3Pos;
TVector3 n1 = (An[anodeID].first - An[anodeID].second).Cross((sx3Pos - An[anodeID].second)).Unit();
TVector3 n2 = (Ca[cathodeID].first - Ca[cathodeID].second).Cross((sx3Pos - Ca[cathodeID].second)).Unit();
// if the handiness of anode and cathode revered, it should be n2 cross n1
trackVec = (n2.Cross(n1)).Unit();
if( verbose ) printf("Theta, Phi = %f, %f \n", trackVec.Theta() *TMath::RadToDeg(), trackVec.Phi()*TMath::RadToDeg());
}
#endif

219
Armory/ClassSX3.h Normal file
View File

@ -0,0 +1,219 @@
#ifndef ClassSX3_h
#define ClassSX3_h
#include <cstdio>
#include <TMath.h>
#include <TVector3.h>
class SX3{
public:
SX3(){}
~SX3(){}
short GetID() const {return id;}
short GetChUp() const {return chUp;}
short GetChDn() const {return chDn;}
short GetChBk() const {return chBk;}
TVector3 GetHitPos() const {return hitPos;}
double GetZFrac() const {return zFrac;} // range from -0.5 to 0.5
void Clear();
void ConstructGeo();
void FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose = false);
void CalSX3Pos(unsigned short ID, unsigned short chUp, unsigned short chDown, unsigned short chBack, float eUp, float eDown);
double GetNumDet() const {return nSX3;}
double GetWidth() const {return sx3Width;}
double GetLength() const {return sx3Length;}
TVector3 GetDnL(short id) const {return SDn[id].first; } // lower strip ID
TVector3 GetDnH(short id) const {return SDn[id].second; } // higher strip ID
TVector3 GetUpL(short id) const {return SUp[id].first; } // lower strip ID
TVector3 GetUpH(short id) const {return SUp[id].second; } // higher strip ID
TVector3 GetDnMid(short id) const { return (SDn[id].first + SDn[id].second)*0.5;}
TVector3 GetUpMid(short id) const { return (SUp[id].first + SUp[id].second)*0.5;}
double GetDetPhi(short id) const { return (SUp[id].second - SUp[id].first).Phi();}
void Print(){
if( id == -1 ){
printf("Did not hit any SX3.\n");
}else{
printf("ID: %d, U,D,B: %d %d %d| zFrac : %.2f\n", id, chUp, chDn, chBk, zFrac);
printf("Hit Pos: %.2f, %.2f, %.2f\n", hitPos.X(), hitPos.Y(), hitPos.Z());
}
}
// void CalZFrac(){
// zFrac = (eUp - eDn)/(eUp + eDn);
// }
private:
short id; // -1 when no hit
short chUp;
short chDn;
short chBk;
double zFrac; // from +1 (downstream) to -1 (upstream)
double eUp;
double eDn;
double eBk;
TVector3 hitPos;
const int nSX3 = 12;
const float sx3Radius = 88;
const float sx3Width = 40;
const float sx3Length = 75;
const float sx3Gap = 46;
std::vector<std::pair<TVector3,TVector3>> SDn; // coners of the SX3 0-11, z = mid point
std::vector<std::pair<TVector3,TVector3>> SUp; // coners of the SX3 12-23, z = mid point
std::vector<TVector3> SNorml; // normal of the SX3 (outward)
std::pair<double, double> Intersect(TVector3 p1, TVector3 p2, TVector3 q1, TVector3 q2, bool verbose){
//see https://nukephysik101.wordpress.com/2023/12/30/intersect-between-2-line-segments/
//zero all z-component
TVector3 a0 = p1; a0.SetZ(0);
TVector3 a1 = p2; a1.SetZ(0);
TVector3 b0 = q1; b0.SetZ(0);
TVector3 b1 = q2; b1.SetZ(0);
double A = ((b0-b1).Cross(a0-a1)).Mag();
double h = ((b0-a0).Cross(b1-a0)).Z()/ A;
double k = ((a1-b0).Cross(a0-b0)).Z()/ A;
if( verbose ) printf(" ----h, k : %f, %f\n", h, k);
return std::pair(h,k);
}
};
inline void SX3::Clear(){
id = -1;
chUp = -1;
chDn = -1;
chBk = -1;
zFrac = TMath::QuietNaN();
eUp = TMath::QuietNaN();
eDn = TMath::QuietNaN();
eBk = TMath::QuietNaN();
}
inline void SX3::ConstructGeo(){
TVector3 sa, sb, sc, sn;
for(int i = 0; i < nSX3; i++){
sa.SetXYZ( sx3Radius, -sx3Width/2, sx3Gap/2 + sx3Length/2 );
sb.SetXYZ( sx3Radius, sx3Width/2, sx3Gap/2 + sx3Length/2 );
double rot = TMath::TwoPi() / nSX3 * (-i - 0.5) - TMath::PiOver2();
sa.RotateZ( rot );
sb.RotateZ( rot );
SDn.push_back(std::pair(sa,sb));
sc.SetXYZ( sx3Radius, -sx3Width/2, sx3Gap/2 );
sc.RotateZ( rot );
sn = ((sc-sa).Cross(sb-sa)).Unit();
SNorml.push_back(sn);
sa.SetXYZ( sx3Radius, -sx3Width/2, -sx3Gap/2 - sx3Length/2 );
sb.SetXYZ( sx3Radius, sx3Width/2, -sx3Gap/2 - sx3Length/2 );
sa.RotateZ( rot );
sb.RotateZ( rot );
SUp.push_back(std::pair(sa,sb));
}
}
inline void SX3::FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose){
id = -1;
for( int i = 0 ; i < nSX3; i++){
if(verbose) printf(" %d ", i);
std::pair<double, double> frac = Intersect( pos, pos + direction, SDn[i].first, SDn[i].second, verbose);
if( frac.second < 0 || frac.second > 1 ) continue;
hitPos = pos + frac.first * direction;
double dis = hitPos.Dot(SNorml[i]);
if(verbose) {
printf("reduced distance : %f\n", dis);
printf(" %d*", (i+1)%nSX3);
Intersect( pos, pos + direction, SDn[(i+1)%nSX3].first, SDn[(i+1)%nSX3].second, verbose);
}
if( TMath::Abs(dis - sx3Radius) > 0.1 ) continue;
chDn = 2 * TMath::Floor(frac.second * 4);
chUp = chDn + 1;
double zPos = hitPos.Z();
if( (sx3Gap/2 < zPos && zPos < sx3Gap/2 + sx3Length ) || (-sx3Gap/2 - sx3Length < zPos && zPos < -sx3Gap/2 ) ){
id = zPos > 0 ? i : i + 12;
zFrac = zPos > 0 ? (zPos - sx3Gap/2. - sx3Length/2.)/sx3Length : (zPos - ( - sx3Gap/2. - sx3Length/2.) )/sx3Length ;
chBk = TMath::Floor( (zFrac + 0.5) * 4 ) + 8;
if( verbose) Print();
return ;
}else{
if( verbose ) printf(" zPos out of sensitive region\n");
}
}
if( verbose) Print();
}
inline void SX3::CalSX3Pos(unsigned short ID, unsigned short chUp, unsigned short chDown, unsigned short chBack, float eUp, float eDown){
hitPos.Clear();
if( (chUp - chDown) != 1 || (chDown % 2) != 0) return ;
int reducedID = ID % nSX3;
TVector3 sa, sb;
if( ID < nSX3 ){ //down
sa = SDn[reducedID].second;
sb = SDn[reducedID].first;
}else{
sa = SUp[reducedID].second;
sb = SUp[reducedID].first;
}
hitPos.SetX( (sb.X() - sa.X()) * chUp/8 + sa.X());
hitPos.SetY( (sb.Y() - sa.Y()) * chUp/8 + sa.Y());
if( eUp == 0 || eDown == 0 ){
hitPos.SetZ( sa.Z() + (2*(chBk - 7)-1) * sx3Length / 8 );
}else{
double frac = (eUp - eDown)/(eUp + eDown); // from +1 (downstream) to -1 (upstream)
double zPos = sa.Z() + sx3Length * frac/2;
hitPos.SetZ( zPos );
}
}
#endif

View File

@ -273,8 +273,13 @@ void script(TString fileName = "", int maxEvent = -1){
haha->DrawTrack(pos, dir, true); haha->DrawTrack(pos, dir, true);
PC pc = haha->FindWireID(pos, dir, true); PW pc;
SX3 sx3 = haha->FindSX3Pos(pos, dir, true); pc.ConstructGeo();
pc.FindWireID(pos, dir, true);
SX3 sx3;
sx3.ConstructGeo();
sx3.FindSX3Pos(pos, dir, true);
// haha->CalTrack(sx3.hitPos, wireID.first, wireID.second, true); // haha->CalTrack(sx3.hitPos, wireID.first, wireID.second, true);