#define GainMatchSX3_cxx #include "GainMatchSX3.h" #include #include #include #include #include #include #include #include #include #include "Armory/ClassSX3.h" #include "TVector3.h" TH2F *hSX3FvsB; TH2F *hsx3IndexVE; int padID = 0; SX3 sx3_contr; TCutG *cut; std::map, std::vector>> dataPoints; void GainMatchSX3::Begin(TTree * /*tree*/) { TString option = GetOption(); hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000); hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); sx3_contr.ConstructGeo(); // Load the TCutG object TFile *cutFile = TFile::Open("sx3cut.root"); if (!cutFile || cutFile->IsZombie()) { std::cerr << "Error: Could not open sx3cut.root" << std::endl; return; } cut = dynamic_cast(cutFile->Get("sx3cut")); if (!cut) { std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl; return; } cut->SetName("sx3cut"); // Ensure the cut has the correct name } Bool_t GainMatchSX3::Process(Long64_t entry) { b_sx3Multi->GetEntry(entry); b_sx3ID->GetEntry(entry); b_sx3Ch->GetEntry(entry); b_sx3E->GetEntry(entry); b_sx3T->GetEntry(entry); b_qqqMulti->GetEntry(entry); b_qqqID->GetEntry(entry); b_qqqCh->GetEntry(entry); b_qqqE->GetEntry(entry); b_qqqT->GetEntry(entry); b_pcMulti->GetEntry(entry); b_pcID->GetEntry(entry); b_pcCh->GetEntry(entry); b_pcE->GetEntry(entry); b_pcT->GetEntry(entry); sx3.CalIndex(); qqq.CalIndex(); pc.CalIndex(); std::vector> ID; for (int i = 0; i < sx3.multi; i++) { ID.push_back(std::pair(sx3.id[i], i)); } if (ID.size() > 0) { std::sort(ID.begin(), ID.end(), [](const std::pair &a, const std::pair &b) { return a.first < b.first; }); std::vector> sx3ID; sx3ID.push_back(ID[0]); bool found = false; for (size_t i = 1; i < ID.size(); i++) { if (ID[i].first == sx3ID.back().first) { sx3ID.push_back(ID[i]); if (sx3ID.size() >= 3) { found = true; } } else { if (!found) { sx3ID.clear(); sx3ID.push_back(ID[i]); } } } if (found) { int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1; float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0; for (size_t i = 0; i < sx3ID.size(); i++) { int index = sx3ID[i].second; if (sx3.ch[index] < 8) { if (sx3.ch[index] % 2 == 0) { sx3ChDn = sx3.ch[index] / 2; sx3EDn = sx3.e[index]; } else { sx3ChUp = sx3.ch[index] / 2; sx3EUp = sx3.e[index]; } } else { sx3ChBk = sx3.ch[index] - 8; // if (sx3ChBk == 2) // printf("Found back channel Det %d Back %d \n", sx3.id[index], sx3ChBk); sx3EBk = sx3.e[index]; } } hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk); // Fill the histogram for the front vs back std::array detectorIDs; for (int i = 0; i < sx3.multi; i++) { if (sx3.id[i]==3) { TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk); TH2F *hist2d = (TH2F *)gDirectory->Get(histName); if (!hist2d) { hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000); } // if (sx3ChBk == 2) // printf("Found back channel Det %d Back %d \n", sx3.id[i], sx3ChBk); hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]); hist2d->Fill(sx3EUp + sx3EDn, sx3EBk); if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk)) { // Accumulate data for gain matching dataPoints[{sx3.id[i], sx3ChUp, sx3ChBk}].emplace_back(sx3EBk, sx3EUp, sx3EDn); } } } } } return kTRUE; } void GainMatchSX3::Terminate() { const int MAX_DET = 24; const int MAX_UP = 4; const int MAX_DOWN = 4; const int MAX_BK = 4; double gainArray[MAX_DET][MAX_UP][MAX_BK] = {{{0}}}; bool gainValid[MAX_DET][MAX_UP][MAX_BK] = {{{false}}}; std::ofstream outFile("sx3_GainMatch.txt"); if (!outFile.is_open()) { std::cerr << "Error opening output file!" << std::endl; return; } // === Updated dataPoints type === // std::map, std::vector>> dataPoints; // Gain fit using up+dn vs bk for (const auto &kv : dataPoints) { auto [id, ud, bk] = kv.first; const auto &pts = kv.second; if (pts.size() < 5) continue; std::vector bkE, udE; for (const auto &pr : pts) { double eUp, eDn, eBk; std::tie(eBk, eUp, eDn) = pr; bkE.push_back(eBk); udE.push_back(eUp + eDn); } TGraph g(bkE.size(), bkE.data(), udE.data()); TF1 f("f", "[0]*x", 0, 16000); g.Fit(&f, "QNR"); gainArray[id][ud][bk] = f.GetParameter(0); gainValid[id][ud][bk] = true; } // Output results for (int id = 0; id < MAX_DET; ++id) { for (int bk = 0; bk < MAX_BK; ++bk) { for (int ud = 0; ud < MAX_UP; ++ud) { if (gainValid[id][ud][bk]) { outFile << id << " " << bk << " " << ud << " " << gainArray[id][ud][bk] << std::endl; printf("Gain match Det%d Up+Dn%d Back%d → %.4f \n", id, ud, bk, gainArray[id][ud][bk]); } } } } outFile.close(); std::cout << "Gain matching complete." << std::endl; // === Create histograms === TH2F *hFVB = new TH2F("hFVB", "Corrected Up+Dn vs Corrected Back;Corrected Back E;Up+Dn E", 400, 0, 16000, 400, 0, 16000); TH2F *hAsym = new TH2F("hAsym", "Up vs Dn dvide corrected back;Up/Back E;Dn/Back E", 400, 0.0, 1.0, 400, 0.0, 1.0); // Fill histograms for (const auto &kv : dataPoints) { auto [id, ud, bk] = kv.first; if (!gainValid[id][ud][bk]) continue; double gain = gainArray[id][ud][bk]; for (const auto &pr : kv.second) { double eBk, eUp, eDn; std::tie(eBk, eUp, eDn) = pr; double updn = eUp + eDn; if (updn == 0) continue; double asym = (eUp - eDn) / updn; double correctedBack = eBk * gain; hFVB->Fill(correctedBack, updn); hAsym->Fill(eUp / correctedBack, eDn / correctedBack); } } // Optional: save histograms to a file // TFile *outHist = new TFile("sx3_gainmatch_hists.root", "RECREATE"); // hFVB->Write(); // hAsym->Write(); // outHist->Close(); }