#define GainMatchSX3_cxx #include "GainMatchSX3.h" #include #include #include #include #include #include #include #include #include #include #include "Armory/ClassSX3.h" #include #include "TVector3.h" TH2F *hSX3FvsB; TH2F *hSX3FvsB_g; TH2F *hsx3IndexVE; TH2F *hsx3IndexVE_g; TH2F *hSX3; TH2F *hsx3Coin; int padID = 0; SX3 sx3_contr; TCutG *cut; TCutG *cut1; std::map, std::vector>> dataPoints; std::map, int> comboCounts; const int MAX_DET = 24; const int MAX_UP = 4; const int MAX_DOWN = 4; const int MAX_BK = 4; double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}}; bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}}; // ==== Configuration Flags ==== const bool interactiveMode = false; // If true: show canvas + wait for user const bool verboseFit = true; // If true: print fit summary and chi² const bool drawCanvases = false; // If false: canvases won't be drawn at all void GainMatchSX3::Begin(TTree * /*tree*/) { TString option = GetOption(); hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000); hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000); hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4); hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12); sx3_contr.ConstructGeo(); // Load the TCutG object TFile *cutFile = TFile::Open("sx3cut.root"); if (!cutFile || cutFile->IsZombie()) { std::cerr << "Error: Could not open sx3cut.root" << std::endl; return; } cut = dynamic_cast(cutFile->Get("sx3cut")); if (!cut) { std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl; return; } cut->SetName("sx3cut"); // Ensure the cut has the correct name // Load the TCutG object TFile *cutFile1 = TFile::Open("UvD.root"); bool cut1Loaded = (cut1 != nullptr); cut1 = dynamic_cast(cutFile1->Get("UvD")); if (!cut1) { std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl; return; } cut1->SetName("UvD"); // std::string filename = "sx3_GainMatchfront.txt"; // std::ifstream infile(filename); // if (!infile.is_open()) // { // std::cerr << "Error opening " << filename << "!" << std::endl; // return; // } // int id, bk, u, d; // double gain; // while (infile >> id >> bk >> u >> d >> gain) // { // frontGain[id][bk][u][d] = gain; // frontGainValid[id][bk][u][d] = true; // } } Bool_t GainMatchSX3::Process(Long64_t entry) { b_sx3Multi->GetEntry(entry); b_sx3ID->GetEntry(entry); b_sx3Ch->GetEntry(entry); b_sx3E->GetEntry(entry); b_sx3T->GetEntry(entry); b_qqqMulti->GetEntry(entry); b_qqqID->GetEntry(entry); b_qqqCh->GetEntry(entry); b_qqqE->GetEntry(entry); b_qqqT->GetEntry(entry); b_pcMulti->GetEntry(entry); b_pcID->GetEntry(entry); b_pcCh->GetEntry(entry); b_pcE->GetEntry(entry); b_pcT->GetEntry(entry); sx3.CalIndex(); qqq.CalIndex(); pc.CalIndex(); std::vector> ID; for (int i = 0; i < sx3.multi; i++) { // for (int j = i + 1; j < sx3.multi; j++) // { // if (sx3.id[i] == 3) // hsx3Coin->Fill(sx3.index[i], sx3.index[j]); // } if (sx3.e[i] > 100) { ID.push_back(std::pair(sx3.id[i], i)); hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]); } } if (ID.size() > 0) { std::sort(ID.begin(), ID.end(), [](const std::pair &a, const std::pair &b) { return a.first < b.first; }); // start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce std::vector> sx3ID; sx3ID.push_back(ID[0]); bool found = false; for (size_t i = 1; i < ID.size(); i++) { // Check if id of i belongs to the same detector and then add it to the detector ID vector if (ID[i].first == sx3ID.back().first) { // count the nunmber of hits that belong to the same detector sx3ID.push_back(ID[i]); if (sx3ID.size() >= 3) { found = true; } } else { // the next event does not belong to the same detector, abandon the first event and continue with the next one if (!found) { sx3ID.clear(); sx3ID.push_back(ID[i]); } } } if (found) { int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1; float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0; // Build the correlated set once for (size_t i = 0; i < sx3ID.size(); i++) { if (sx3.e[i] > 100) { int index = sx3ID[i].second; if (sx3.ch[index] < 8) { if (sx3.ch[index] % 2 == 0) { sx3ChDn = sx3.ch[index]; sx3EDn = sx3.e[index]; } else { sx3ChUp = sx3.ch[index]; sx3EUp = sx3.e[index]; } } else { sx3ChBk = sx3.ch[index] - 8; sx3EBk = sx3.e[index]; } } } // Only if we found all three channels do we proceed if (sx3ChUp >= 0 && sx3ChDn >= 0 && sx3ChBk >= 0) { // Fill once per correlated set hSX3->Fill(sx3ChDn + 4, sx3ChBk); hSX3->Fill(sx3ChUp, sx3ChBk); hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk); // Pick detector ID from one of the correlated hits (all same detector) int detID = sx3ID[0].first; TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", detID, sx3ChUp, sx3ChDn, sx3ChBk); TH2F *hist2d = (TH2F *)gDirectory->Get(histName); if (!hist2d) { hist2d = new TH2F(histName, histName, 400, 0, 16000, 400, 0, 16000); } if (sx3EBk > 100 || sx3EUp > 100 || sx3EDn > 100) { hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk); // Use the correlated triplet directly dataPoints[{detID, sx3ChBk, sx3ChUp, sx3ChDn}] .emplace_back(sx3EBk, sx3EUp, sx3EDn); } hist2d->Fill(sx3EUp + sx3EDn, sx3EBk); } } } return kTRUE; } const double GAIN_ACCEPTANCE_THRESHOLD = 0.3; void GainMatchSX3::Terminate() { double backSlope[MAX_DET][MAX_BK] = {{0}}; bool backSlopeValid[MAX_DET][MAX_BK] = {{false}}; std::ofstream outFile("sx3_BackGains.txt"); if (!outFile.is_open()) { std::cerr << "Error opening sx3_BackGains.txt for writing!" << std::endl; return; } // === Gain fit: (Up+Dn) vs Back, grouped by [id][bk] === for (int id = 0; id < MAX_DET; id++) { for (int bk = 0; bk < MAX_BK; bk++) { std::vector bkE, udE; // Collect all (Up+Dn, Back) for this id,bk for (const auto &kv : dataPoints) { auto [cid, cbk, u, d] = kv.first; if (cid != id || cbk != bk) continue; for (const auto &pr : kv.second) { double eBk, eUp, eDn; std::tie(eBk, eUp, eDn) = pr; if ((eBk < 100) || (eUp < 100) || (eDn < 100)) continue; bkE.push_back(eBk); udE.push_back(eUp + eDn); } } if (bkE.size() < 5) continue; // not enough statistics // Build graph with errors const double fixedError = 10.0; // ADC channels std::vector exVals(udE.size(), 0.0); // no x error std::vector eyVals(udE.size(), fixedError); // constant y error TGraphErrors g(udE.size(), udE.data(), bkE.data(), exVals.data(), eyVals.data()); TF1 f("f", "[0]*x", 0, 16000); f.SetParameter(0, 1.0); // initial slope if (drawCanvases) { TCanvas *c = new TCanvas(Form("c_%d_%d", id, bk), "Back Fit", 800, 600); g.SetTitle(Form("Detector %d Back %d: (Up+Dn) vs Back", id, bk)); g.SetMarkerStyle(20); g.SetMarkerColor(kBlue); g.Draw("AP"); g.Fit(&f, interactiveMode ? "Q" : "QNR"); if (verboseFit) { double chi2 = f.GetChisquare(); int ndf = f.GetNDF(); double reducedChi2 = (ndf != 0) ? chi2 / ndf : -1; std::cout << Form("Det%d Back%d → Slope: %.4f | χ²/ndf = %.2f/%d = %.2f", id, bk, f.GetParameter(0), chi2, ndf, reducedChi2) << std::endl; } if (interactiveMode) { c->Update(); gPad->WaitPrimitive(); } else { c->Close(); } } else { g.Fit(&f, "QNR"); } double slope = f.GetParameter(0); if (std::abs(slope - 1.0) < 0.3) // sanity check { backSlope[id][bk] = slope; backSlopeValid[id][bk] = true; outFile << id << " " << bk << " " << slope << "\n"; printf("Back slope Det%d Bk%d → %.4f\n", id, bk, slope); } else { std::cerr << "Warning: Bad slope for Det" << id << " Bk" << bk << " slope=" << slope << std::endl; } } } outFile.close(); std::cout << "Back gain matching complete." << std::endl; // === Create histograms === TH2F *hFVB = new TH2F("hFVB", "Corrected Up+Dn vs Corrected Back;Up+Dn E;Corrected Back E", 600, 0, 16000, 600, 0, 16000); TH2F *hAsym = new TH2F("hAsym", "Up vs Dn divide corrected back;Up/Back E;Dn/Back E", 400, 0.0, 1.0, 400, 0.0, 1.0); // Fill histograms using corrected back energies for (const auto &kv : dataPoints) { auto [id, bk, u, d] = kv.first; if (!backSlopeValid[id][bk]) continue; double slope = backSlope[id][bk]; for (const auto &pr : kv.second) { double eBk, eUp, eDn; std::tie(eBk, eUp, eDn) = pr; double updn = eUp + eDn; if (updn == 0 || eBk == 0) continue; double correctedBack = eBk * slope; double asym = (eUp - eDn) / updn; hFVB->Fill(updn,correctedBack ); hAsym->Fill(eUp / correctedBack, eDn / correctedBack); } } }