#define GainMatchSX3Front_cxx #include "GainMatchSX3Front.h" #include #include #include #include #include #include #include #include #include #include #include "Armory/ClassSX3.h" #include "TGraphErrors.h" #include "TMultiDimFit.h" #include "TVector3.h" TH2F *hSX3FvsB; TH2F *hSX3FvsB_g; TH2F *hsx3IndexVE; TH2F *hsx3IndexVE_g; TH2F *hSX3; TH2F *hsx3Coin; int padID = 0; SX3 sx3_contr; TCutG *cut; TCutG *cut1; std::map, std::vector>> dataPoints; // Gain arrays const int MAX_DET = 24; const int MAX_UP = 4; const int MAX_DOWN = 4; const int MAX_BK = 4; double backGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}}; bool backGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}}; double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}}; bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}}; void GainMatchSX3Front::Begin(TTree * /*tree*/) { TString option = GetOption(); hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000); hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000); hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4); hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12); sx3_contr.ConstructGeo(); // Load the TCutG object TFile *cutFile = TFile::Open("sx3cut.root"); bool cutLoaded = (cut != nullptr); cut = dynamic_cast(cutFile->Get("sx3cut")); if (!cut) { std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl; return; } cut->SetName("sx3cut"); // Ensure the cut has the correct name // Load the TCutG object TFile *cutFile1 = TFile::Open("UvD.root"); bool cut1Loaded = (cut1 != nullptr); cut1 = dynamic_cast(cutFile1->Get("UvD")); if (!cut1) { std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl; return; } cut1->SetName("UvD"); std::string filename = "sx3_GainMatchback.txt"; std::ifstream infile(filename); if (!infile.is_open()) { std::cerr << "Error opening " << filename << "!" << std::endl; return; } int id, bk, u, d; double gain; while (infile >> id >> bk >> u >> d >> gain) { backGain[id][bk][u][d] = gain; if(backGain[id][bk][u][d] > 0) backGainValid[id][bk][u][d] = true; else backGainValid[id][bk][u][d] = false; } infile.close(); std::cout << "Loaded back gains from " << filename << std::endl; SX3 sx3_contr; } Bool_t GainMatchSX3Front::Process(Long64_t entry) { b_sx3Multi->GetEntry(entry); b_sx3ID->GetEntry(entry); b_sx3Ch->GetEntry(entry); b_sx3E->GetEntry(entry); b_sx3T->GetEntry(entry); sx3.CalIndex(); std::vector> ID; for (int i = 0; i < sx3.multi; i++) { for (int j = i + 1; j < sx3.multi; j++) { // if (sx3.id[i] == 3) hsx3Coin->Fill(sx3.index[i], sx3.index[j]); } if (sx3.e[i] > 100) { ID.push_back(std::pair(sx3.id[i], i)); hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]); } } if (ID.size() > 0) { std::sort(ID.begin(), ID.end(), [](const std::pair &a, const std::pair &b) { return a.first < b.first; }); // start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce std::vector> sx3ID; sx3ID.push_back(ID[0]); bool found = false; for (size_t i = 1; i < ID.size(); i++) { // Check if id of i belongs to the same detector and then add it to the detector ID vector if (ID[i].first == sx3ID.back().first) { // count the nunmber of hits that belong to the same detector sx3ID.push_back(ID[i]); if (sx3ID.size() >= 3) { found = true; } } else { // the next event does not belong to the same detector, abandon the first event and continue with the next one if (!found) { sx3ID.clear(); sx3ID.push_back(ID[i]); } } } if (found) { int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1; float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0; for (size_t i = 0; i < sx3ID.size(); i++) { int index = sx3ID[i].second; // Check the channel number and assign it to the appropriate channel type if (sx3.ch[index] < 8) { if (sx3.ch[index] % 2 == 0) { sx3ChDn = sx3.ch[index] / 2; sx3EDn = sx3.e[index]; } else { sx3ChUp = sx3.ch[index] / 2; sx3EUp = sx3.e[index]; } } else { sx3ChBk = sx3.ch[index] - 8; // if (sx3ChBk == 2) // printf("Found back channel Det %d Back %d \n", sx3.id[index], sx3ChBk); sx3EBk = sx3.e[index]; } } // If we have a valid front and back channel, fill the histograms hSX3->Fill(sx3ChDn + 4, sx3ChBk); hSX3->Fill(sx3ChUp, sx3ChBk); // Fill the histogram for the front vs back hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk); for (int i = 0; i < sx3.multi; i++) { if ( sx3.e[i] > 100)// && sx3.id[i] == 4) { // back gain correction // Fill the histogram for the front vs back with gain correction hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk); // Fill the index vs energy histogram hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]); // } // { TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk); TH2F *hist2d = (TH2F *)gDirectory->Get(histName); if (!hist2d) { hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000); } // if (sx3ChBk == 2) // printf("Found back channel Det %d Back %d \n", sx3.id[i], sx3ChBk); // hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]); // hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk); hist2d->Fill(sx3EUp + sx3EDn, sx3EBk); if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk) && cut1 && cut1->IsInside(sx3EUp / sx3EBk, sx3EDn / sx3EBk)) { if (backGainValid[sx3.id[i]][sx3ChBk][sx3ChUp][sx3ChDn]) { sx3EBk *= backGain[sx3.id[i]][sx3ChBk][sx3ChUp][sx3ChDn]; } // Accumulate data for gain matching dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn); } } } } } return kTRUE; } void GainMatchSX3Front::Terminate() { std::map, TVectorD> fitCoefficients; // === Gain matching === std::ofstream outFile("sx3_GainMatchfront.txt"); if (!outFile.is_open()) { std::cerr << "Error opening output file!" << std::endl; return; } TH2F *hUvD = new TH2F("hUvD", " UvD; Up/CorrBack; Down/CorrBack", 600, 0, 1, 600, 0, 1); for (const auto &kv : dataPoints) { auto [id, bk, u, d] = kv.first; const auto &pts = kv.second; if (pts.size() < 5) continue; std::vector uE, dE, udE, corrBkE; for (const auto &pr : pts) { double eBkCorr, eUp, eDn; std::tie(eBkCorr, eUp, eDn) = pr; if( (eBkCorr < 100) || (eUp <100) || (eDn < 100)) continue; // Skip if any energy is zero uE.push_back(eUp / eBkCorr); dE.push_back(eDn / eBkCorr); udE.push_back(eUp + eDn); corrBkE.push_back(eBkCorr); hUvD->Fill(eUp / eBkCorr, eDn / eBkCorr); } if( uE.size() < 5 || dE.size() < 5 || corrBkE.size() < 5) continue; // Ensure we have enough points for fitting // TGraph g(udE.size(), udE.data(), corrBkE.data()); // TF1 f("f", "[0]*x", 0, 20000); // f.SetParameter(0, 1.0); // Initial guess for the gain // g.Fit(&f, "R"); const double fixedError = 20.0; // in ADC channels std::vector xVals, yVals, exVals, eyVals; // Build data with fixed error for (size_t i = 0; i < udE.size(); ++i) { double x = udE[i]; // front energy double y = corrBkE[i]; // back energy xVals.push_back(x); yVals.push_back(y); // exVals.push_back(fixedError); // error in front energy eyVals.push_back(fixedError); // error in back energy } // Build TGraphErrors with errors TGraphErrors g(xVals.size(), xVals.data(), yVals.data(), exVals.data(), eyVals.data()); TF1 f("f", "[0]*x", 0, 16000); // f.SetParameter(0, 1.0); // Initial guess // Interactive canvas TCanvas *c = new TCanvas(Form("c_%d_%d_%d_%d", id, bk, u, d), "Fit", 800, 600); g.SetTitle(Form("Detector %d: U%d D%d B%d", id, u, d, bk)); g.SetMarkerStyle(20); g.SetMarkerColor(kBlue); g.Draw("AP"); g.Fit(&f, "Q"); // Quiet fit double chi2 = f.GetChisquare(); int ndf = f.GetNDF(); double reducedChi2 = (ndf != 0) ? chi2 / ndf : -1; std::cout << Form("Det%d U%d D%d B%d → Gain: %.4f | χ²/ndf = %.2f/%d = %.2f", id, u, d, bk, f.GetParameter(0), chi2, ndf, reducedChi2) << std::endl; // Show canvas and wait for user to continue c->Update(); gPad->WaitPrimitive(); frontGain[id][bk][u][d] = f.GetParameter(0); frontGainValid[id][bk][u][d] = true; outFile << id << " " << bk << " " << u << " " << d << " " << frontGain[id][bk][u][d] << std::endl; printf("Front gain Det%d Back%d Up%dDn%d → %.4f\n", id, bk, u, d, frontGain[id][bk][u][d]); } outFile.close(); std::cout << "Gain matching complete." << std::endl; // === Stage 3: Create corrected histogram === TH2F *hCorrectedFvB = new TH2F("hCorrectedFvB", "Corrected;Corrected Front Sum;Corrected Back", 800, 0, 8000, 800, 0, 8000); TH2F *hCorrectedUvD = new TH2F("hCorrectedUvD", "Corrected UvD; UvD Up; UvD Down", 600, 0, 1, 600, 0, 1); for (const auto &kv : dataPoints) { auto [id, bk, u, d] = kv.first; double front = frontGain[id][bk][u][d]; for (const auto &pr : kv.second) { double eBk, eUp, eDn; std::tie(eBk, eUp, eDn) = pr; double corrUp = eUp * front; // double corrDn = eDn * front; hCorrectedFvB->Fill(corrUp + eDn, eBk); hCorrectedUvD->Fill(corrUp / eBk, eDn / eBk); } } // // === Final canvas === // gStyle->SetOptStat(1110); // TCanvas *c1 = new TCanvas("c1", "Gain Correction Results", 1200, 600); // c1->Divide(2, 1); // c1->cd(1); // hSX3FvsB_g->SetTitle("Before Correction (Gated)"); // hSX3FvsB_g->GetXaxis()->SetTitle("Measured Front Sum (E_Up + E_Dn)"); // hSX3FvsB_g->GetYaxis()->SetTitle("Measured Back E"); // hSX3FvsB_g->Draw("colz"); // c1->cd(2); // hCorrectedFvB->SetTitle("After Correction"); // hCorrectedFvB->Draw("colz"); // TF1 *diag = new TF1("diag", "x", 0, 40000); // diag->SetLineColor(kRed); // diag->SetLineWidth(2); // diag->Draw("same"); std::cout << "Terminate() completed successfully." << std::endl; }