#define GainMatchSX3_cxx #include "GainMatchSX3.h" #include #include #include #include #include #include #include #include #include #include #include "Armory/ClassSX3.h" #include "TGraphErrors.h" #include "TMultiDimFit.h" #include "TVector3.h" TH2F *hSX3FvsB; TH2F *hSX3FvsB_g; TH2F *hsx3IndexVE; TH2F *hsx3IndexVE_g; TH2F *hSX3; TH2F *hsx3Coin; int padID = 0; SX3 sx3_contr; TCutG *cut; TCutG *cut1; std::map, std::vector>> dataPoints; void GainMatchSX3::Begin(TTree * /*tree*/) { TString option = GetOption(); hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000); hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000); hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4); hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12); sx3_contr.ConstructGeo(); // Load the TCutG object TFile *cutFile = TFile::Open("sx3cut.root"); if (!cutFile || cutFile->IsZombie()) { std::cerr << "Error: Could not open sx3cut.root" << std::endl; return; } cut = dynamic_cast(cutFile->Get("sx3cut")); if (!cut) { std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl; return; } cut->SetName("sx3cut"); // Ensure the cut has the correct name // Load the TCutG object TFile *cutFile1 = TFile::Open("UvD.root"); if (!cutFile1 || cutFile1->IsZombie()) { std::cerr << "Error: Could not open UvD.root" << std::endl; return; } cut1 = dynamic_cast(cutFile1->Get("UvD")); if (!cut1) { std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl; return; } cut1->SetName("UvD"); } Bool_t GainMatchSX3::Process(Long64_t entry) { b_sx3Multi->GetEntry(entry); b_sx3ID->GetEntry(entry); b_sx3Ch->GetEntry(entry); b_sx3E->GetEntry(entry); b_sx3T->GetEntry(entry); b_qqqMulti->GetEntry(entry); b_qqqID->GetEntry(entry); b_qqqCh->GetEntry(entry); b_qqqE->GetEntry(entry); b_qqqT->GetEntry(entry); b_pcMulti->GetEntry(entry); b_pcID->GetEntry(entry); b_pcCh->GetEntry(entry); b_pcE->GetEntry(entry); b_pcT->GetEntry(entry); sx3.CalIndex(); qqq.CalIndex(); pc.CalIndex(); std::vector> ID; for (int i = 0; i < sx3.multi; i++) { for (int j = i + 1; j < sx3.multi; j++) { if (sx3.id[i] == 3) hsx3Coin->Fill(sx3.index[i], sx3.index[j]); } if (sx3.e[i] > 100) { ID.push_back(std::pair(sx3.id[i], i)); hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]); } } if (ID.size() > 0) { std::sort(ID.begin(), ID.end(), [](const std::pair &a, const std::pair &b) { return a.first < b.first; }); // start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce std::vector> sx3ID; sx3ID.push_back(ID[0]); bool found = false; for (size_t i = 1; i < ID.size(); i++) { // Check if id of i belongs to the same detector and then add it to the detector ID vector if (ID[i].first == sx3ID.back().first) { // count the nunmber of hits that belong to the same detector sx3ID.push_back(ID[i]); if (sx3ID.size() >= 3) { found = true; } } else { // the next event does not belong to the same detector, abandon the first event and continue with the next one if (!found) { sx3ID.clear(); sx3ID.push_back(ID[i]); } } } if (found) { int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1; float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0; for (size_t i = 0; i < sx3ID.size(); i++) { int index = sx3ID[i].second; // Check the channel number and assign it to the appropriate channel type if (sx3.ch[index] < 8) { if (sx3.ch[index] % 2 == 0) { sx3ChDn = sx3.ch[index]; sx3EDn = sx3.e[index]; } else { sx3ChUp = sx3.ch[index]; sx3EUp = sx3.e[index]; } } else { sx3ChBk = sx3.ch[index] - 8; // if (sx3ChBk == 2) // printf("Found back channel Det %d Back %d \n", sx3.id[index], sx3ChBk); sx3EBk = sx3.e[index]; } } // If we have a valid front and back channel, fill the histograms hSX3->Fill(sx3ChDn, sx3ChBk); hSX3->Fill(sx3ChUp, sx3ChBk); // Fill the histogram for the front vs back hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk); for (int i = 0; i < sx3.multi; i++) { if (sx3.id[i] == 3 && sx3.e[i] > 100) { // Fill the histogram for the front vs back with gain correction hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk); // Fill the index vs energy histogram hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]); // } // { TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk); TH2F *hist2d = (TH2F *)gDirectory->Get(histName); if (!hist2d) { hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000); } // if (sx3ChBk == 2) // printf("Found back channel Det %d Back %d \n", sx3.id[i], sx3ChBk); // hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]); // hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk); hist2d->Fill(sx3EUp + sx3EDn, sx3EBk); if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk)) // if (sx3.id[i] < 24 && sx3ChUp < 4 && sx3ChBk < 4 && std::isfinite(sx3EUp) && std::isfinite(sx3EDn) && std::isfinite(sx3EBk)) { // Accumulate data for gain matching dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn); } } } } } return kTRUE; } void GainMatchSX3::Terminate() { const int MAX_DET = 24; const int MAX_UP = 4; const int MAX_DOWN = 4; const int MAX_BK = 4; double gainArray[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}}; bool gainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}}; std::ofstream outFile("sx3_MultiDimFit_results.txt"); if (!outFile.is_open()) { std::cerr << "Error opening output file!" << std::endl; return; } // === Loop over all (id, bk, up, dn) combinations === for (const auto &kv : dataPoints) { auto [id, bk, u, d] = kv.first; const auto &pts = kv.second; if (pts.size() < 5) continue; int N = pts.size(); double *x0 = new double[N]; double *x1 = new double[N]; double *x2 = new double[N]; double *y = new double[N]; int mPowers[] = {1,1,1}; // Fill arrays for (int i = 0; i < N; ++i) { double eBk, eUp, eDn; std::tie(eBk, eUp, eDn) = pts[i]; x0[i] = eBk; x1[i] = eUp; x2[i] = eDn; y[i] = eUp + eDn; // Target is front sum } // Build MultiDim Fit TMultiDimFit *mdf = new TMultiDimFit(3, TMultiDimFit::kMonomials, "v"); mdf->SetMaxPowers(mPowers); // Up to quadratic terms mdf->SetMaxTerms(3); // Limit number of terms kept // Add points for (int i = 0; i < N; ++i) { double vars[3] = {x0[i], x1[i], x2[i]}; mdf->AddRow(vars, y[i]); } mdf->MakeHistograms(); mdf->FindParameterization(); mdf->Print("a"); // Print coefficients mdf-> // Save result string TString formula; mdf->GetFunctions(formula); outFile << id << " " << bk << " " << u << " " << d << " " << formula.Data() << std::endl; printf("Det %d Bk %d Up %d Dn %d — MultiDimFit formula: %s\n", id, bk, u, d, formula.Data()); gainValid[id][bk][u][d] = true; // Save as "valid" so we can use it // Clean up delete[] x0; delete[] x1; delete[] x2; delete[] y; delete mdf; } outFile.close(); std::cout << "MultiDim fits complete.\n"; // === Example histogram after correction === TH2F *hFVB = new TH2F("hFVB", "Corrected Up+Dn vs Back;Back E;Corrected Up+Dn E", 400, 0, 16000, 400, 0, 16000); for (const auto &kv : dataPoints) { auto [id, bk, u, d] = kv.first; if (!gainValid[id][bk][u][d]) continue; // Recreate the fitted model to evaluate TMultiDimFit *mdf = new TMultiDimFit(3, TMultiDimFit::kMonomials, "v"); mdf->SetMaxPowers(2); mdf->SetMaxTerms(10); // Re-fill points to refit (if needed — or you can serialize coefficients instead) const auto &pts = kv.second; for (const auto &pr : pts) { double eBk, eUp, eDn; std::tie(eBk, eUp, eDn) = pr; double vars[3] = {eBk, eUp, eDn}; double y = eUp + eDn; mdf->AddRow(vars, y); } mdf->FindParameterization(); // Fill histogram with corrected "front" from model for (const auto &pr : kv.second) { double eBk, eUp, eDn; std::tie(eBk, eUp, eDn) = pr; double vars[3] = {eBk, eUp, eDn}; double correctedFront = mdf->Eval(vars); if (eBk == 0 || correctedFront == 0) continue; hFVB->Fill(eBk, correctedFront); } delete mdf; } // Save histogram if needed // TFile *outHist = new TFile("sx3_multidimfit_hists.root", "RECREATE"); // hFVB->Write(); // outHist->Close(); }