#define Analyzer_cxx #include "Analyzer.h" #include "Armory/ClassSX3.h" #include "Armory/ClassPW.h" #include #include #include #include #include "TVector3.h" #include #include #include #include #include #include TH2F *hsx3IndexVE; TH2F *hqqqIndexVE; TH2F *hpcIndexVE; TH2F *hpcIndexVE_GM; TH2F *hsx3Coin; TH2F *hqqqCoin; TH2F *hpcCoin; TH2F *hqqqPolar; TH2F *hsx3VpcIndex; TH2F *hqqqVpcIndex; TH2F *hqqqVpcE; TH2F *hsx3VpcE; TH2F *hanVScatsum; TH2F *hanVScatsum_a[24]; TH1F *hAnodeMultiplicity; int padID = 0; SX3 sx3_contr; PW pw_contr; PW pwinstance; TVector3 hitPos; std::map> slopeInterceptMap; bool HitNonZero; TH1F *hZProj; void Analyzer::Begin(TTree * /*tree*/) { TString option = GetOption(); hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000); hsx3IndexVE->SetNdivisions(-612, "x"); hqqqIndexVE = new TH2F("hqqqIndexVE", "QQQ index vs Energy; QQQ index ; Energy", 4 * 2 * 16, 0, 4 * 2 * 16, 400, 0, 5000); hqqqIndexVE->SetNdivisions(-1204, "x"); hpcIndexVE = new TH2F("hpcIndexVE", "PC index vs Energy; PC index ; Energy", 2 * 24, 0, 2 * 24, 400, 0, 16000); hpcIndexVE->SetNdivisions(-1204, "x"); hpcIndexVE_GM = new TH2F("hpcIndexVE_GM", "PC index vs Energy; PC index ; Energy", 2 * 24, 0, 2 * 24, 400, 0, 16000); hpcIndexVE_GM->SetNdivisions(-1204, "x"); hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12); hqqqCoin = new TH2F("hqqqCoin", "QQQ Coincident", 4 * 2 * 16, 0, 4 * 2 * 16, 4 * 2 * 16, 0, 4 * 2 * 16); hpcCoin = new TH2F("hpcCoin", "PC Coincident", 2 * 24, 0, 2 * 24, 2 * 24, 0, 2 * 24); hqqqPolar = new TH2F("hqqqPolar", "QQQ Polar ID", 16 * 4, -TMath::Pi(), TMath::Pi(), 16, 10, 50); hsx3VpcIndex = new TH2F("hsx3Vpcindex", "sx3 vs pc; sx3 index; pc index", 24 * 12, 0, 24 * 12, 48, 0, 48); hsx3VpcIndex->SetNdivisions(-612, "x"); hsx3VpcIndex->SetNdivisions(-12, "y"); hqqqVpcIndex = new TH2F("hqqqVpcindex", "qqq vs pc; qqq index; pc index", 4 * 2 * 16, 0, 4 * 2 * 16, 48, 0, 48); hqqqVpcIndex->SetNdivisions(-612, "x"); hqqqVpcIndex->SetNdivisions(-12, "y"); hqqqVpcE = new TH2F("hqqqVpcEnergy", "qqq vs pc; qqq energy; pc energy", 400, 0, 5000, 800, 0, 16000); hqqqVpcE->SetNdivisions(-612, "x"); hqqqVpcE->SetNdivisions(-12, "y"); hsx3VpcE = new TH2F("hsx3VpcEnergy", "sx3 vs pc; sx3 energy; pc energy", 400, 0, 5000, 800, 0, 16000); hsx3VpcE->SetNdivisions(-612, "x"); hsx3VpcE->SetNdivisions(-12, "y"); hZProj = new TH1F("hZProj", "Z Projection", 200, -600, 600); hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400, 0, 10000, 400, 0, 16000); hAnodeMultiplicity = new TH1F("hAnodeMultiplicity", "Number of Anodes/Event", 40, 0, 40); for (int i = 0; i < 24; i++) { TString histName = Form("hAnodeVsCathode_%d", i); TString histTitle = Form("Anode %d vs Cathode Sum; Anode E; Cathode Sum E", i); hanVScatsum_a[i] = new TH2F(histName, histTitle, 400, 0, 10000, 400, 0, 16000); } sx3_contr.ConstructGeo(); pw_contr.ConstructGeo(); std::ifstream inputFile("slope_intercept_results.txt"); if (inputFile.is_open()) { std::string line; int index; double slope, intercept; while (std::getline(inputFile, line)) { std::stringstream ss(line); ss >> index >> slope >> intercept; if (index >= 0 && index <= 47) { slopeInterceptMap[index] = std::make_pair(slope, intercept); } } inputFile.close(); } else { std::cerr << "Error opening slope_intercept.txt" << std::endl; } } Bool_t Analyzer::Process(Long64_t entry) { // if ( entry > 100 ) return kTRUE; hitPos.Clear(); HitNonZero = false; // if( entry > 1) return kTRUE; // printf("################### ev : %llu \n", entry); b_sx3Multi->GetEntry(entry); b_sx3ID->GetEntry(entry); b_sx3Ch->GetEntry(entry); b_sx3E->GetEntry(entry); b_sx3T->GetEntry(entry); b_qqqMulti->GetEntry(entry); b_qqqID->GetEntry(entry); b_qqqCh->GetEntry(entry); b_qqqE->GetEntry(entry); b_qqqT->GetEntry(entry); b_pcMulti->GetEntry(entry); b_pcID->GetEntry(entry); b_pcCh->GetEntry(entry); b_pcE->GetEntry(entry); b_pcT->GetEntry(entry); sx3.CalIndex(); qqq.CalIndex(); pc.CalIndex(); // sx3.Print(); // ########################################################### Raw data // //======================= SX3 std::vector> ID; // first = id, 2nd = index for (int i = 0; i < sx3.multi; i++) { ID.push_back(std::pair(sx3.id[i], i)); hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]); for (int j = i + 1; j < sx3.multi; j++) { hsx3Coin->Fill(sx3.index[i], sx3.index[j]); } for (int j = 0; j < pc.multi; j++) { hsx3VpcIndex->Fill(sx3.index[i], pc.index[j]); // if( sx3.ch[index] > 8 ){ // hsx3VpcE->Fill( sx3.e[i], pc.e[j] ); // } } } if (ID.size() > 0) { std::sort(ID.begin(), ID.end(), [](const std::pair &a, const std::pair &b) { return a.first < b.first; }); // printf("##############################\n"); // for( size_t i = 0; i < ID.size(); i++) printf("%zu | %d %d \n", i, ID[i].first, ID[i].second ); std::vector> sx3ID; sx3ID.push_back(ID[0]); bool found = false; for (size_t i = 1; i < ID.size(); i++) { if (ID[i].first == sx3ID.back().first) { sx3ID.push_back(ID[i]); if (sx3ID.size() >= 3) { found = true; } } else { if (!found) { sx3ID.clear(); sx3ID.push_back(ID[i]); } } } // printf("---------- sx3ID Multi : %zu \n", sx3ID.size()); if (found) { int sx3ChUp, sx3ChDn, sx3ChBk; float sx3EUp, sx3EDn; // printf("------ sx3 ID : %d, multi: %zu\n", sx3ID[0].first, sx3ID.size()); for (size_t i = 0; i < sx3ID.size(); i++) { int index = sx3ID[i].second; // printf(" %zu | index %d | ch : %d, energy : %d \n", i, index, sx3.ch[index], sx3.e[index]); if (sx3.ch[index] < 8) { if (sx3.ch[index] % 2 == 0) { sx3ChDn = sx3.ch[index]; sx3EDn = sx3.e[index]; } else { sx3ChUp = sx3.ch[index]; sx3EUp = sx3.e[index]; } } else { sx3ChBk = sx3.ch[index]; } for (int j = 0; j < pc.multi; j++) { // hsx3VpcIndex->Fill( sx3.index[i], pc.index[j] ); if (sx3.ch[index] > 8) { hsx3VpcE->Fill(sx3.e[i], pc.e[j]); // hpcIndexVE->Fill( pc.index[i], pc.e[i] ); } } } sx3_contr.CalSX3Pos(sx3ID[0].first, sx3ChUp, sx3ChDn, sx3ChBk, sx3EUp, sx3EDn); hitPos = sx3_contr.GetHitPos(); HitNonZero = true; // hitPos.Print(); } } // //======================= QQQ for (int i = 0; i < qqq.multi; i++) { // for( int j = 0; j < pc.multi; j++){ // if(pc.index[j]==4){ hqqqIndexVE->Fill(qqq.index[i], qqq.e[i]); // } // } for (int j = 0; j < qqq.multi; j++) { if (j == i) continue; hqqqCoin->Fill(qqq.index[i], qqq.index[j]); } for (int j = i + 1; j < qqq.multi; j++) { for (int k = 0; k < pc.multi; k++) { if (pc.index[k] < 24 && pc.e[k] > 50) { hqqqVpcE->Fill(qqq.e[i], pc.e[k]); // hpcIndexVE->Fill( pc.index[i], pc.e[i] ); hqqqVpcIndex->Fill(qqq.index[i], pc.index[j]); } // } } // if( qqq.used[i] == true ) continue; // if( qqq.id[i] == qqq.id[j] && (16 - qqq.ch[i]) * (16 - qqq.ch[j]) < 0 ){ // must be same detector and wedge and ring if (qqq.id[i] == qqq.id[j]) { // must be same detector int chWedge = -1; int chRing = -1; if (qqq.ch[i] < qqq.ch[j]) { chRing = qqq.ch[j] - 16; chWedge = qqq.ch[i]; } else { chRing = qqq.ch[i]; chWedge = qqq.ch[j] - 16; } // printf(" ID : %d , chWedge : %d, chRing : %d \n", qqq.id[i], chWedge, chRing); double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5); double rho = 10. + 40. / 16. * (chRing + 0.5); // if(qqq.e[i]>50){ hqqqPolar->Fill(theta, rho); // } // qqq.used[i] = true; // qqq.used[j] = true; if (!HitNonZero) { double x = rho * TMath::Cos(theta); double y = rho * TMath::Sin(theta); hitPos.SetXYZ(x, y, 23 + 75 + 30); HitNonZero = true; } } } } // //======================= PC ID.clear(); int counter = 0; std::vector> E; E.clear(); for (int i = 0; i < pc.multi; i++) { if (pc.e[i] > 100) ID.push_back(std::pair(pc.id[i], i)); if (pc.e[i] > 100) E.push_back(std::pair(pc.index[i], pc.e[i])); hpcIndexVE->Fill(pc.index[i], pc.e[i]); for (int j = i + 1; j < pc.multi; j++) { hpcCoin->Fill(pc.index[i], pc.index[j]); } // Gain Matching of PC wires if (pc.index[i] >= 0 && pc.index[i] < 48) { // printf("index: %d, Old cathode energy: %d \n", pc.index[i],pc.e[i]); auto it = slopeInterceptMap.find(pc.index[i]); if (it != slopeInterceptMap.end()) { double slope = it->second.first; double intercept = it->second.second; // printf("slope: %f, intercept:%f\n" ,slope, intercept); pc.e[i] = slope * pc.e[i] + intercept; // printf("index: %d, New cathode energy: %d \n",pc.index[i], pc.e[i]); } hpcIndexVE_GM->Fill(pc.index[i], pc.e[i]); } } // Calculate the crossover points and put them into an array pwinstance.ConstructGeo(); Coord Crossover[24][24][2]; TVector3 a, c, diff; double a2, ac, c2, adiff, cdiff, denom, alpha, beta; int index = 0; for (int i = 0; i < pwinstance.An.size(); i++) { a = pwinstance.An[i].first - pwinstance.An[i].second; for (int j = 0; j < pwinstance.Ca.size(); j++) { // Ok so this method uses what is essentially th solution of 2 equations to find the point of intersection between the anode and cathode wires // here a and c are the vectors of the anode and cathode wires respectively // diff is the perpendicular vector between the anode and cathode wires // The idea behind this is to then find the scalars alpha and beta that give a ratio between 0 and -1, c = pwinstance.Ca[j].first - pwinstance.Ca[j].second; diff = pwinstance.An[i].first - pwinstance.Ca[j].first; a2 = a.Dot(a); ac = a.Dot(c); c2 = c.Dot(c); adiff = a.Dot(diff); cdiff = c.Dot(diff); denom = a2 * c2 - ac * ac; alpha = (ac * cdiff - c2 * adiff) / denom; beta = (a2 * cdiff - ac * adiff) / denom; Crossover[i][j][0].x = pwinstance.An[i].first.X() + alpha * a.X(); Crossover[i][j][0].y = pwinstance.An[i].first.Y() + alpha * a.Y(); Crossover[i][j][0].z = pwinstance.An[i].first.Z() + alpha * a.Z(); // placeholder variable Crossover[i][j][2].x has nothing to do with the geometry of the crossover and is being used to store the alpha value- //-so that it can be used to sort "good" hits later Crossover[i][j][1].x = alpha; // if (i == 16) // { // for (int k = 0; k < 5; k++) // { // if ((i + 24 + k) % 24 == j) // { // // if (alpha < 0 && alpha >= -1) // // { // printf("Anode and cathode indices and coord : %d %d %f %f %f %f\n", i, j, pwinstance.Ca[j].first.X(), pwinstance.Ca[j].first.Y(), pwinstance.Ca[j].first.Z(), alpha); // printf("Crossover wires, points and alpha are : %f %f %f %f \n", Crossover[i][j][1].x, Crossover[i][j][1].y, Crossover[i][j][1].z, Crossover[i][j][2].x /*this is alpha*/); // // } // } // } // } } } std::vector> anodeHits = {}; std::vector> cathodeHits = {}; int aID = 0; int cID = 0; float aE = 0; float cE = 0; // Define the excluded SX3 and QQQ channels // std::unordered_set excludeSX3 = {34, 35, 36, 37, 61, 62, 67, 73, 74, 75, 76, 77, 78, 79, 80, 93, 97, 100, 103, 108, 109, 110, 111, 112}; // std::unordered_set excludeQQQ = {0, 17, 109, 110, 111, 112, 113, 119, 127, 128}; // inCuth=false; // inCutl=false; // inPCCut=false; for (int i = 0; i < pc.multi; i++) { if (pc.e[i] > 50 && pc.multi < 7) { float aESum = 0; float cESum = 0; float aEMax = 0; float cEMax = 0; float aEnextMax = 0; float cEnextMax = 0; int aIDMax = 0; int cIDMax = 0; int aIDnextMax = 0; int cIDnextMax = 0; // creating a vector of pairs of anode and cathode hits that is sorted in order of decreasing energy if (pc.index[i] < 24) { anodeHits.push_back(std::pair(pc.index[i], pc.e[i])); std::sort(anodeHits.begin(), anodeHits.end(), [](const std::pair &a, const std::pair &b) { return a.second > b.second; }); } else if (pc.index[i] >= 24) { cathodeHits.push_back(std::pair(pc.index[i], pc.e[i])); std::sort(cathodeHits.begin(), cathodeHits.end(), [](const std::pair &a, const std::pair &b) { return a.second > b.second; }); } for (int j = i + 1; j < pc.multi; j++) { // if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){ // // hpcCoin->Fill(pc.index[i], pc.index[j]); // inPCCut = true; // } hpcCoin->Fill(pc.index[i], pc.index[j]); } if (anodeHits.size() >= 1 && cathodeHits.size() >= 1) { for (const auto &anode : anodeHits) { aID = anode.first; aE = anode.second; aESum += aE; if (aE > aEMax) { aIDnextMax = aIDMax; aEnextMax = aEMax; aEMax = aE; aIDMax = aID; } if (aE > aEnextMax && aE < aEMax) { aEnextMax = aE; aIDnextMax = aID; } // printf("aID : %d, aE : %f\n", aID, aE); } // printf("aID : %d, aE : %f, cE : %f\n", aID, aE, cE); for (const auto &cathode : cathodeHits) { cID = cathode.first; cE = cathode.second; if (cE > cEMax) { cIDnextMax = cIDMax; cEnextMax = cEMax; cEMax = cE; cIDMax = cID; } if (cE > cEnextMax && cE < cEMax) { cEnextMax = cE; cIDnextMax = cID; } cESum += cE; } // } // inCuth = false; // inCutl = false; // inPCCut = false; // for(int j=i+1;jIsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){ // // hpcCoin->Fill(pc.index[i], pc.index[j]); // inPCCut = true; // } // hpcCoin->Fill(pc.index[i], pc.index[j]); // } // Check if the accumulated energies are within the defined ranges // if (AnCatSum_high && AnCatSum_high->IsInside(aESum, cESum)) { // inCuth = true; // } // if (AnCatSum_low && AnCatSum_low->IsInside(aESum, cESum)) { // inCutl = true; // } // Fill histograms based on the cut conditions // if (inCuth && inPCCut) { // hanVScatsum_hcut->Fill(aESum, cESum); // } // if (inCutl && inPCCut) { // hanVScatsum_lcut->Fill(aESum, cESum); // } // for(auto anode : anodeHits){ // float aE = anode.second; // aESum += aE; // if(inPCCut){ hanVScatsum->Fill(aEMax, cESum); // } if (aID < 24 && aE > 50) { hanVScatsum_a[aID]->Fill(aE, cESum); } // } // Fill histograms for the `pc` data hpcIndexVE->Fill(pc.index[i], pc.e[i]); // if(inPCCut){ hAnodeMultiplicity->Fill(anodeHits.size()); // } } } } if (E.size() >= 3) { int aID = 0; int cID = 0; float aE = 0; float cE = 0; // if( ID[0].first < 1 ) { // aID = pc.ch[ID[0].second]; // cID = pc.ch[ID[1].second]; // }else{ // cID = pc.ch[ID[0].second]; // aID = pc.ch[ID[1].second]; // } // printf("anode= %d, cathode = %d\n", aID, cID); for (int k = 0; k < qqq.multi; k++) { if (qqq.index[k] == 75 && pc.index[k] == 2 && pc.e[k] > 100) { int multi_an = 0; for (int l = 0; l < E.size(); l++) { if (E[l].first < 24) { multi_an++; } } if (multi_an >= 1) { for (int l = 0; l < E.size(); l++) { if (E[l].first < 24 && E[l].first != 19 && E[l].first != 12) { aE = E[l].second; } else if (E[l].first > 24) { cE = E[l].second; } } } } } hanVScatsum->Fill(aE, cE); if (ID[0].first < 1) { aID = pc.ch[ID[0].second]; cID = pc.ch[ID[1].second]; } else { cID = pc.ch[ID[0].second]; aID = pc.ch[ID[1].second]; } if (HitNonZero) { pw_contr.CalTrack(hitPos, aID, cID); hZProj->Fill(pw_contr.GetZ0()); } } // ########################################################### Track constrcution // ############################## DO THE KINEMATICS return kTRUE; } void Analyzer::Terminate() { gStyle->SetOptStat("neiou"); TCanvas *canvas = new TCanvas("cANASEN", "ANASEN", 2000, 2000); canvas->Divide(3, 3); // hsx3VpcIndex->Draw("colz"); //=============================================== pad-1 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); hsx3IndexVE->Draw("colz"); //=============================================== pad-2 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); hqqqIndexVE->Draw("colz"); //=============================================== pad-3 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); hpcIndexVE->Draw("colz"); //=============================================== pad-4 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); hsx3Coin->Draw("colz"); //=============================================== pad-5 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); canvas->cd(padID)->SetLogz(true); hqqqCoin->Draw("colz"); //=============================================== pad-6 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); hpcCoin->Draw("colz"); //=============================================== pad-7 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); // hsx3VpcIndex ->Draw("colz"); hsx3VpcE->Draw("colz"); //=============================================== pad-8 padID++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1); // hqqqVpcIndex ->Draw("colz"); hqqqVpcE->Draw("colz"); //=============================================== pad-9 padID++; // canvas->cd(padID)->DrawFrame(-50, -50, 50, 50); // hqqqPolar->Draw("same colz pol"); canvas->cd(padID); canvas->cd(padID)->SetGrid(1); // hZProj->Draw(); hanVScatsum->Draw("colz"); }