ANASEN_analysis/Armory/ClassPW.h
Vignesh Sitaraman 39e8f41ab1 modified: Analyzer.C implemented basic trackreconstruction
modified:   Armory/ANASEN_model.C changed qqq radii
	modified:   Armory/ClassPW.h implemented basic trackreconstruction
2025-02-27 10:34:41 -05:00

315 lines
10 KiB
C++

#ifndef ClassPW_h
#define ClassPW_h
#include <cstdio>
#include <TMath.h>
#include <TVector3.h>
#include <TRandom.h>
struct PWHitInfo
{
std::pair<short, short> nearestWire; // anode, cathode
std::pair<double, double> nearestDist; // anode, cathode
std::pair<short, short> nextNearestWire; // anode, cathode
std::pair<double, double> nextNearestDist; // anode, cathode
void Clear()
{
nearestWire.first = -1;
nearestWire.second = -1;
nearestDist.first = 999999999;
nearestDist.second = 999999999;
nextNearestWire.first = -1;
nextNearestWire.second = -1;
nextNearestDist.first = 999999999;
nextNearestDist.second = 999999999;
}
};
struct Coord
{
float x, y, z;
Coord() : x(0), y(0), z(0) {}
Coord(const TVector3 &vec)
{
x = vec.X(); // TVector3's X() returns the x-coordinate
y = vec.Y(); // TVector3's Y() returns the y-coordinate
z = vec.Z(); // TVector3's Z() returns the z-coordinate
}
};
//! ########################################################
class PW
{ // proportional wire
public:
PW() { ClearHitInfo(); };
~PW() {};
PWHitInfo GetHitInfo() const { return hitInfo; }
std::pair<short, short> GetNearestID() const { return hitInfo.nearestWire; }
std::pair<double, double> GetNearestDistance() const { return hitInfo.nearestDist; }
std::pair<short, short> Get2ndNearestID() const { return hitInfo.nextNearestWire; }
std::pair<double, double> Get2ndNearestDistance() const { return hitInfo.nextNearestDist; }
std::vector<std::pair<TVector3, TVector3>> An; // the anode wire position vector in space
std::vector<std::pair<TVector3, TVector3>> Ca; // the cathode wire position vector in space
TVector3 GetTrackPos() const { return trackPos; }
TVector3 GetTrackVec() const { return trackVec; }
double GetTrackTheta() const { return trackVec.Theta(); }
double GetTrackPhi() const { return trackVec.Phi(); }
double GetZ0();
int GetNumWire() const { return nWire; }
double GetDeltaAngle() const { return dAngle; }
double GetAnodeLength() const { return anodeLength; }
double GetCathodeLength() const { return cathodeLength; }
TVector3 GetAnodeDn(short id) const { return An[id].first; }
TVector3 GetAnodeUp(short id) const { return An[id].second; }
TVector3 GetCathodeDn(short id) const { return Ca[id].first; }
TVector3 GetCathodeUp(short id) const { return Ca[id].second; }
TVector3 GetAnodneMid(short id) const { return (An[id].first + An[id].second) * 0.5; }
double GetAnodeTheta(short id) const { return (An[id].first - An[id].second).Theta(); }
double GetAnodePhi(short id) const { return (An[id].first - An[id].second).Phi(); }
TVector3 GetCathodneMid(short id) const { return (Ca[id].first + Ca[id].second) * 0.5; }
double GetCathodeTheta(short id) const { return (Ca[id].first - Ca[id].second).Theta(); }
double GetCathodePhi(short id) const { return (Ca[id].first - Ca[id].second).Phi(); }
void ClearHitInfo();
void ConstructGeo();
void FindWireID(TVector3 pos, TVector3 direction, bool verbose = false);
void CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose = false);
void CalTrack2(TVector3 sx3Pos, TVector3 anodeInt, bool verbose = false);
void Print()
{
printf(" The nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", hitInfo.nearestWire.first,
hitInfo.nearestDist.first,
hitInfo.nearestWire.second,
hitInfo.nearestDist.second);
printf(" The 2nd nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", hitInfo.nextNearestWire.first,
hitInfo.nextNearestDist.first,
hitInfo.nextNearestWire.second,
hitInfo.nextNearestDist.second);
}
private:
PWHitInfo hitInfo;
TVector3 trackPos;
TVector3 trackVec;
const int nWire = 24;
const int wireShift = 3;
const float zLen = 380; // mm
const float radiusA = 37;
const float radiusC = 43;
double dAngle;
double anodeLength;
double cathodeLength;
// std::vector<std::pair<TVector3, TVector3>> An; // the anode wire position vector in space
// std::vector<std::pair<TVector3, TVector3>> Ca; // the cathode wire position vector in space
double Distance(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2)
{
TVector3 na = a1 - a2;
TVector3 nb = b1 - b2;
TVector3 nd = (na.Cross(nb)).Unit();
return TMath::Abs(nd.Dot(a1 - b2));
}
};
inline void PW::ClearHitInfo()
{
hitInfo.Clear();
}
inline void PW::ConstructGeo()
{
An.clear();
Ca.clear();
std::pair<TVector3, TVector3> p1; // anode
std::pair<TVector3, TVector3> q1; // cathode
// anode and cathode start at pos-Y axis and count in right-Hand
// anode wire shift is right-hand.
// cathode wire shift is left-hand.
for (int i = 0; i < nWire; i++)
{
// Anode rotate right-hand
p1.first.SetXYZ(radiusA * TMath::Cos(TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
radiusA * TMath::Sin(TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
zLen / 2);
p1.second.SetXYZ(radiusA * TMath::Cos(TMath::TwoPi() / nWire * (i + wireShift) + TMath::PiOver2()),
radiusA * TMath::Sin(TMath::TwoPi() / nWire * (i + wireShift) + TMath::PiOver2()),
-zLen / 2);
An.push_back(p1);
// Cathod rotate left-hand with the 3 wire offset accounted for (+1 from the calculated offset from the PC coincidence spectrum)
q1.first.SetXYZ(radiusC * TMath::Cos(TMath::TwoPi() / nWire * (i + wireShift + 1) + TMath::PiOver2()),
radiusC * TMath::Sin(TMath::TwoPi() / nWire * (i + wireShift + 1) + TMath::PiOver2()),
zLen / 2);
q1.second.SetXYZ(radiusC * TMath::Cos(TMath::TwoPi() / nWire * (i + 1) + TMath::PiOver2()),
radiusC * TMath::Sin(TMath::TwoPi() / nWire * (i + 1) + TMath::PiOver2()),
-zLen / 2);
Ca.push_back(q1);
}
// correcting for the fact that the order of the cathode wires is reversed
std::reverse(Ca.begin(), Ca.end());
// adjusting for the 3 wire offset, the rbegin and rend are used as the rotation of the wires is done in the opposite direction i.e. 1,2,3 -> 3,1,2
// NOT NECESSARY ANY MORE, HAS BEEN IMCORPORATED INTO THE WIREOFFSET IN THE BEGINNING
// std::rotate(Ca.rbegin(), Ca.rbegin() + 4, Ca.rend());
dAngle = wireShift * TMath::TwoPi() / nWire;
anodeLength = TMath::Sqrt(zLen * zLen + TMath::Power(2 * radiusA * TMath::Sin(dAngle / 2), 2));
cathodeLength = TMath::Sqrt(zLen * zLen + TMath::Power(2 * radiusC * TMath::Sin(dAngle / 2), 2));
}
inline void PW::FindWireID(TVector3 pos, TVector3 direction, bool verbose)
{
hitInfo.Clear();
double phi = direction.Phi();
for (int i = 0; i < nWire; i++)
{
double disA = 99999999;
double phiS = An[i].first.Phi() - TMath::PiOver4();
double phiL = An[i].second.Phi() + TMath::PiOver4();
// printf("A%2d: %f %f | %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg(), phi * TMath::RadToDeg());
if (phi > 0 && phiS > phiL)
phiL = phiL + TMath::TwoPi();
if (phi < 0 && phiS > phiL)
phiS = phiS - TMath::TwoPi();
if (phiS < phi && phi < phiL)
{
disA = Distance(pos, pos + direction, An[i].first, An[i].second);
if (disA < hitInfo.nearestDist.first)
{
hitInfo.nearestDist.first = disA;
hitInfo.nearestWire.first = i;
}
}
double disC = 99999999;
phiS = Ca[i].second.Phi() - TMath::PiOver4();
phiL = Ca[i].first.Phi() + TMath::PiOver4();
// printf("C%2d: %f %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
if (phi > 0 && phiS > phiL)
phiL = phiL + TMath::TwoPi();
if (phi < 0 && phiS > phiL)
phiS = phiS - TMath::TwoPi();
if (phiS < phi && phi < phiL)
{
disC = Distance(pos, pos + direction, Ca[i].first, Ca[i].second);
if (disC < hitInfo.nearestDist.second)
{
hitInfo.nearestDist.second = disC;
hitInfo.nearestWire.second = i;
}
}
if (verbose)
printf(" %2d | %8.2f, %8.2f\n", i, disA, disC);
}
//==== find the 2nd nearest wire
short anode1 = hitInfo.nearestWire.first;
short aaa1 = anode1 - 1;
if (aaa1 < 0)
aaa1 += nWire;
short aaa2 = (anode1 + 1) % nWire;
double haha1 = Distance(pos, pos + direction, An[aaa1].first, An[aaa1].second);
double haha2 = Distance(pos, pos + direction, An[aaa2].first, An[aaa2].second);
if (haha1 < haha2)
{
hitInfo.nextNearestWire.first = aaa1;
hitInfo.nextNearestDist.first = haha1;
}
else
{
hitInfo.nextNearestWire.first = aaa2;
hitInfo.nextNearestDist.first = haha2;
}
short cathode1 = hitInfo.nearestWire.second;
short ccc1 = cathode1 - 1;
if (ccc1 < 0)
ccc1 += nWire;
short ccc2 = (cathode1 + 1) % nWire;
haha1 = Distance(pos, pos + direction, Ca[ccc1].first, Ca[ccc1].second);
haha2 = Distance(pos, pos + direction, Ca[ccc2].first, Ca[ccc2].second);
if (haha1 < haha2)
{
hitInfo.nextNearestWire.second = ccc1;
hitInfo.nextNearestDist.second = haha1;
}
else
{
hitInfo.nextNearestWire.second = ccc2;
hitInfo.nextNearestDist.second = haha2;
}
if (verbose)
Print();
}
inline void PW::CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose)
{
trackPos = sx3Pos;
TVector3 n1 = (An[anodeID].first - An[anodeID].second).Cross((sx3Pos - An[anodeID].second)).Unit();
TVector3 n2 = (Ca[cathodeID].first - Ca[cathodeID].second).Cross((sx3Pos - Ca[cathodeID].second)).Unit();
// if the handiness of anode and cathode revered, it should be n2 cross n1
trackVec = (n2.Cross(n1)).Unit();
if (verbose)
printf("Theta, Phi = %f, %f \n", trackVec.Theta() * TMath::RadToDeg(), trackVec.Phi() * TMath::RadToDeg());
}
inline void PW::CalTrack2(TVector3 siPos, TVector3 anodeInt, bool verbose)
{
float mx, my;
double z;
mx = siPos.X() / (siPos.X() - anodeInt.X());
my = siPos.Y() / (siPos.Y() - anodeInt.Y());
z=siPos.Z() + mx * (anodeInt.Z() - siPos.Z());
// if (mx == my)
{
trackVec=TVector3(0,0,z);
}
if (verbose)
printf("X slope = %f and Y slope = %f \n", mx, my);
}
inline double PW::GetZ0()
{
double x = trackPos.X();
double y = trackPos.Y();
double rho = TMath::Sqrt(x * x + y * y);
double theta = trackVec.Theta();
return trackVec.Z();
}
#endif