modified: GainMatchSX3.C to make the calib a 2 factor calib insteade of inlcuding the fronts modified: GainMatchSX3Front.C chcanged the readout for the new back calib
383 lines
12 KiB
C
383 lines
12 KiB
C
#define GainMatchSX3_cxx
|
|
|
|
#include "GainMatchSX3.h"
|
|
#include <TH2.h>
|
|
#include <TF1.h>
|
|
#include <TStyle.h>
|
|
#include <TCanvas.h>
|
|
#include <TMath.h>
|
|
#include <TCutG.h>
|
|
#include <fstream>
|
|
#include <utility>
|
|
#include <algorithm>
|
|
#include <TProfile.h>
|
|
#include "Armory/ClassSX3.h"
|
|
#include <TGraphErrors.h>
|
|
#include "TVector3.h"
|
|
|
|
TH2F *hSX3FvsB;
|
|
TH2F *hSX3FvsB_g;
|
|
TH2F *hsx3IndexVE;
|
|
TH2F *hsx3IndexVE_g;
|
|
TH2F *hSX3;
|
|
TH2F *hsx3Coin;
|
|
|
|
int padID = 0;
|
|
|
|
SX3 sx3_contr;
|
|
TCutG *cut;
|
|
TCutG *cut1;
|
|
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
|
|
std::map<std::tuple<int, int, int, int>, int> comboCounts;
|
|
|
|
const int MAX_DET = 24;
|
|
const int MAX_UP = 4;
|
|
const int MAX_DOWN = 4;
|
|
const int MAX_BK = 4;
|
|
|
|
double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
|
|
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
|
|
|
|
// ==== Configuration Flags ====
|
|
const bool interactiveMode = false; // If true: show canvas + wait for user
|
|
const bool verboseFit = true; // If true: print fit summary and chi²
|
|
const bool drawCanvases = false; // If false: canvases won't be drawn at all
|
|
|
|
void GainMatchSX3::Begin(TTree * /*tree*/)
|
|
{
|
|
TString option = GetOption();
|
|
|
|
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
|
|
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
|
|
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
|
|
hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
|
|
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
|
|
|
|
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
|
|
|
|
sx3_contr.ConstructGeo();
|
|
|
|
// Load the TCutG object
|
|
TFile *cutFile = TFile::Open("sx3cut.root");
|
|
if (!cutFile || cutFile->IsZombie())
|
|
{
|
|
std::cerr << "Error: Could not open sx3cut.root" << std::endl;
|
|
return;
|
|
}
|
|
cut = dynamic_cast<TCutG *>(cutFile->Get("sx3cut"));
|
|
if (!cut)
|
|
{
|
|
std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl;
|
|
return;
|
|
}
|
|
cut->SetName("sx3cut"); // Ensure the cut has the correct name
|
|
|
|
// Load the TCutG object
|
|
TFile *cutFile1 = TFile::Open("UvD.root");
|
|
bool cut1Loaded = (cut1 != nullptr);
|
|
cut1 = dynamic_cast<TCutG *>(cutFile1->Get("UvD"));
|
|
if (!cut1)
|
|
{
|
|
std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl;
|
|
return;
|
|
}
|
|
cut1->SetName("UvD");
|
|
|
|
// std::string filename = "sx3_GainMatchfront.txt";
|
|
|
|
// std::ifstream infile(filename);
|
|
// if (!infile.is_open())
|
|
// {
|
|
// std::cerr << "Error opening " << filename << "!" << std::endl;
|
|
// return;
|
|
// }
|
|
|
|
// int id, bk, u, d;
|
|
// double gain;
|
|
// while (infile >> id >> bk >> u >> d >> gain)
|
|
// {
|
|
// frontGain[id][bk][u][d] = gain;
|
|
// frontGainValid[id][bk][u][d] = true;
|
|
// }
|
|
}
|
|
|
|
Bool_t GainMatchSX3::Process(Long64_t entry)
|
|
{
|
|
|
|
b_sx3Multi->GetEntry(entry);
|
|
b_sx3ID->GetEntry(entry);
|
|
b_sx3Ch->GetEntry(entry);
|
|
b_sx3E->GetEntry(entry);
|
|
b_sx3T->GetEntry(entry);
|
|
b_qqqMulti->GetEntry(entry);
|
|
b_qqqID->GetEntry(entry);
|
|
b_qqqCh->GetEntry(entry);
|
|
b_qqqE->GetEntry(entry);
|
|
b_qqqT->GetEntry(entry);
|
|
b_pcMulti->GetEntry(entry);
|
|
b_pcID->GetEntry(entry);
|
|
b_pcCh->GetEntry(entry);
|
|
b_pcE->GetEntry(entry);
|
|
b_pcT->GetEntry(entry);
|
|
|
|
sx3.CalIndex();
|
|
qqq.CalIndex();
|
|
pc.CalIndex();
|
|
|
|
std::vector<std::pair<int, int>> ID;
|
|
for (int i = 0; i < sx3.multi; i++)
|
|
{
|
|
|
|
// for (int j = i + 1; j < sx3.multi; j++)
|
|
// {
|
|
// if (sx3.id[i] == 3)
|
|
// hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
|
|
// }
|
|
if (sx3.e[i] > 100)
|
|
{
|
|
ID.push_back(std::pair<int, int>(sx3.id[i], i));
|
|
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
|
|
}
|
|
}
|
|
|
|
if (ID.size() > 0)
|
|
{
|
|
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
|
|
{ return a.first < b.first; });
|
|
|
|
// start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce
|
|
std::vector<std::pair<int, int>> sx3ID;
|
|
sx3ID.push_back(ID[0]);
|
|
bool found = false;
|
|
|
|
for (size_t i = 1; i < ID.size(); i++)
|
|
{ // Check if id of i belongs to the same detector and then add it to the detector ID vector
|
|
if (ID[i].first == sx3ID.back().first)
|
|
{ // count the nunmber of hits that belong to the same detector
|
|
sx3ID.push_back(ID[i]);
|
|
|
|
if (sx3ID.size() >= 3)
|
|
{
|
|
found = true;
|
|
}
|
|
}
|
|
else
|
|
{ // the next event does not belong to the same detector, abandon the first event and continue with the next one
|
|
if (!found)
|
|
{
|
|
sx3ID.clear();
|
|
sx3ID.push_back(ID[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found)
|
|
{
|
|
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
|
|
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
|
|
|
|
// Build the correlated set once
|
|
for (size_t i = 0; i < sx3ID.size(); i++)
|
|
{
|
|
if (sx3.e[i] > 100)
|
|
{
|
|
int index = sx3ID[i].second;
|
|
if (sx3.ch[index] < 8)
|
|
{
|
|
if (sx3.ch[index] % 2 == 0)
|
|
{
|
|
sx3ChDn = sx3.ch[index];
|
|
sx3EDn = sx3.e[index];
|
|
}
|
|
else
|
|
{
|
|
sx3ChUp = sx3.ch[index];
|
|
sx3EUp = sx3.e[index];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sx3ChBk = sx3.ch[index] - 8;
|
|
sx3EBk = sx3.e[index];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only if we found all three channels do we proceed
|
|
if (sx3ChUp >= 0 && sx3ChDn >= 0 && sx3ChBk >= 0)
|
|
{
|
|
// Fill once per correlated set
|
|
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
|
|
hSX3->Fill(sx3ChUp, sx3ChBk);
|
|
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
|
|
|
|
// Pick detector ID from one of the correlated hits (all same detector)
|
|
int detID = sx3ID[0].first;
|
|
|
|
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d",
|
|
detID, sx3ChUp, sx3ChDn, sx3ChBk);
|
|
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
|
|
if (!hist2d)
|
|
{
|
|
hist2d = new TH2F(histName, histName,
|
|
400, 0, 16000, 400, 0, 16000);
|
|
}
|
|
|
|
if (sx3EBk > 100 || sx3EUp > 100 || sx3EDn > 100)
|
|
{
|
|
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
|
|
|
|
// Use the correlated triplet directly
|
|
dataPoints[{detID, sx3ChBk, sx3ChUp, sx3ChDn}]
|
|
.emplace_back(sx3EBk, sx3EUp, sx3EDn);
|
|
}
|
|
|
|
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
|
|
}
|
|
}
|
|
}
|
|
|
|
return kTRUE;
|
|
}
|
|
|
|
const double GAIN_ACCEPTANCE_THRESHOLD = 0.3;
|
|
void GainMatchSX3::Terminate()
|
|
{
|
|
double backSlope[MAX_DET][MAX_BK] = {{0}};
|
|
bool backSlopeValid[MAX_DET][MAX_BK] = {{false}};
|
|
|
|
std::ofstream outFile("sx3_BackGains.txt");
|
|
if (!outFile.is_open())
|
|
{
|
|
std::cerr << "Error opening sx3_BackGains.txt for writing!" << std::endl;
|
|
return;
|
|
}
|
|
|
|
// === Gain fit: (Up+Dn) vs Back, grouped by [id][bk] ===
|
|
for (int id = 0; id < MAX_DET; id++)
|
|
{
|
|
for (int bk = 0; bk < MAX_BK; bk++)
|
|
{
|
|
std::vector<double> bkE, udE;
|
|
|
|
// Collect all (Up+Dn, Back) for this id,bk
|
|
for (const auto &kv : dataPoints)
|
|
{
|
|
auto [cid, cbk, u, d] = kv.first;
|
|
if (cid != id || cbk != bk)
|
|
continue;
|
|
|
|
for (const auto &pr : kv.second)
|
|
{
|
|
double eBk, eUp, eDn;
|
|
std::tie(eBk, eUp, eDn) = pr;
|
|
if ((eBk < 100) || (eUp < 100) || (eDn < 100))
|
|
continue;
|
|
|
|
bkE.push_back(eBk);
|
|
udE.push_back(eUp + eDn);
|
|
}
|
|
}
|
|
|
|
if (bkE.size() < 5)
|
|
continue; // not enough statistics
|
|
|
|
// Build graph with errors
|
|
const double fixedError = 10.0; // ADC channels
|
|
std::vector<double> exVals(udE.size(), 0.0); // no x error
|
|
std::vector<double> eyVals(udE.size(), fixedError); // constant y error
|
|
|
|
TGraphErrors g(udE.size(), udE.data(), bkE.data(),
|
|
exVals.data(), eyVals.data());
|
|
|
|
TF1 f("f", "[0]*x", 0, 16000);
|
|
f.SetParameter(0, 1.0); // initial slope
|
|
|
|
if (drawCanvases)
|
|
{
|
|
TCanvas *c = new TCanvas(Form("c_%d_%d", id, bk), "Back Fit", 800, 600);
|
|
g.SetTitle(Form("Detector %d Back %d: (Up+Dn) vs Back", id, bk));
|
|
g.SetMarkerStyle(20);
|
|
g.SetMarkerColor(kBlue);
|
|
g.Draw("AP");
|
|
|
|
g.Fit(&f, interactiveMode ? "Q" : "QNR");
|
|
|
|
if (verboseFit)
|
|
{
|
|
double chi2 = f.GetChisquare();
|
|
int ndf = f.GetNDF();
|
|
double reducedChi2 = (ndf != 0) ? chi2 / ndf : -1;
|
|
|
|
std::cout << Form("Det%d Back%d → Slope: %.4f | χ²/ndf = %.2f/%d = %.2f",
|
|
id, bk, f.GetParameter(0), chi2, ndf, reducedChi2)
|
|
<< std::endl;
|
|
}
|
|
|
|
if (interactiveMode)
|
|
{
|
|
c->Update();
|
|
gPad->WaitPrimitive();
|
|
}
|
|
else
|
|
{
|
|
c->Close();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
g.Fit(&f, "QNR");
|
|
}
|
|
|
|
double slope = f.GetParameter(0);
|
|
if (std::abs(slope - 1.0) < 0.3) // sanity check
|
|
{
|
|
backSlope[id][bk] = slope;
|
|
backSlopeValid[id][bk] = true;
|
|
outFile << id << " " << bk << " " << slope << "\n";
|
|
printf("Back slope Det%d Bk%d → %.4f\n", id, bk, slope);
|
|
}
|
|
else
|
|
{
|
|
std::cerr << "Warning: Bad slope for Det" << id << " Bk" << bk
|
|
<< " slope=" << slope << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
outFile.close();
|
|
std::cout << "Back gain matching complete." << std::endl;
|
|
|
|
// === Create histograms ===
|
|
TH2F *hFVB = new TH2F("hFVB", "Corrected Up+Dn vs Corrected Back;Up+Dn E;Corrected Back E",
|
|
600, 0, 16000, 600, 0, 16000);
|
|
TH2F *hAsym = new TH2F("hAsym", "Up vs Dn divide corrected back;Up/Back E;Dn/Back E",
|
|
400, 0.0, 1.0, 400, 0.0, 1.0);
|
|
|
|
// Fill histograms using corrected back energies
|
|
for (const auto &kv : dataPoints)
|
|
{
|
|
auto [id, bk, u, d] = kv.first;
|
|
if (!backSlopeValid[id][bk])
|
|
continue;
|
|
|
|
double slope = backSlope[id][bk];
|
|
|
|
for (const auto &pr : kv.second)
|
|
{
|
|
double eBk, eUp, eDn;
|
|
std::tie(eBk, eUp, eDn) = pr;
|
|
|
|
double updn = eUp + eDn;
|
|
if (updn == 0 || eBk == 0)
|
|
continue;
|
|
|
|
double correctedBack = eBk * slope;
|
|
double asym = (eUp - eDn) / updn;
|
|
|
|
hFVB->Fill(updn,correctedBack );
|
|
hAsym->Fill(eUp / correctedBack, eDn / correctedBack);
|
|
}
|
|
}
|
|
}
|