ANASEN_analysis/GainMatchSX3.C
Vignesh Sitaraman 579f4e4f6c modified: .vscode/settings.json
modified:   GainMatchSX3.C to make the calib a 2 factor calib insteade of inlcuding the fronts
	modified:   GainMatchSX3Front.C chcanged the readout for the  new back calib
2025-09-18 13:28:02 -04:00

383 lines
12 KiB
C

#define GainMatchSX3_cxx
#include "GainMatchSX3.h"
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include <TProfile.h>
#include "Armory/ClassSX3.h"
#include <TGraphErrors.h>
#include "TVector3.h"
TH2F *hSX3FvsB;
TH2F *hSX3FvsB_g;
TH2F *hsx3IndexVE;
TH2F *hsx3IndexVE_g;
TH2F *hSX3;
TH2F *hsx3Coin;
int padID = 0;
SX3 sx3_contr;
TCutG *cut;
TCutG *cut1;
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
std::map<std::tuple<int, int, int, int>, int> comboCounts;
const int MAX_DET = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
// ==== Configuration Flags ====
const bool interactiveMode = false; // If true: show canvas + wait for user
const bool verboseFit = true; // If true: print fit summary and chi²
const bool drawCanvases = false; // If false: canvases won't be drawn at all
void GainMatchSX3::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
sx3_contr.ConstructGeo();
// Load the TCutG object
TFile *cutFile = TFile::Open("sx3cut.root");
if (!cutFile || cutFile->IsZombie())
{
std::cerr << "Error: Could not open sx3cut.root" << std::endl;
return;
}
cut = dynamic_cast<TCutG *>(cutFile->Get("sx3cut"));
if (!cut)
{
std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl;
return;
}
cut->SetName("sx3cut"); // Ensure the cut has the correct name
// Load the TCutG object
TFile *cutFile1 = TFile::Open("UvD.root");
bool cut1Loaded = (cut1 != nullptr);
cut1 = dynamic_cast<TCutG *>(cutFile1->Get("UvD"));
if (!cut1)
{
std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl;
return;
}
cut1->SetName("UvD");
// std::string filename = "sx3_GainMatchfront.txt";
// std::ifstream infile(filename);
// if (!infile.is_open())
// {
// std::cerr << "Error opening " << filename << "!" << std::endl;
// return;
// }
// int id, bk, u, d;
// double gain;
// while (infile >> id >> bk >> u >> d >> gain)
// {
// frontGain[id][bk][u][d] = gain;
// frontGainValid[id][bk][u][d] = true;
// }
}
Bool_t GainMatchSX3::Process(Long64_t entry)
{
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
// for (int j = i + 1; j < sx3.multi; j++)
// {
// if (sx3.id[i] == 3)
// hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
// }
if (sx3.e[i] > 100)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
}
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
// start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{ // Check if id of i belongs to the same detector and then add it to the detector ID vector
if (ID[i].first == sx3ID.back().first)
{ // count the nunmber of hits that belong to the same detector
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{ // the next event does not belong to the same detector, abandon the first event and continue with the next one
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
// Build the correlated set once
for (size_t i = 0; i < sx3ID.size(); i++)
{
if (sx3.e[i] > 100)
{
int index = sx3ID[i].second;
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
}
else
{
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}
else
{
sx3ChBk = sx3.ch[index] - 8;
sx3EBk = sx3.e[index];
}
}
}
// Only if we found all three channels do we proceed
if (sx3ChUp >= 0 && sx3ChDn >= 0 && sx3ChBk >= 0)
{
// Fill once per correlated set
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
// Pick detector ID from one of the correlated hits (all same detector)
int detID = sx3ID[0].first;
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d",
detID, sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
if (!hist2d)
{
hist2d = new TH2F(histName, histName,
400, 0, 16000, 400, 0, 16000);
}
if (sx3EBk > 100 || sx3EUp > 100 || sx3EDn > 100)
{
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// Use the correlated triplet directly
dataPoints[{detID, sx3ChBk, sx3ChUp, sx3ChDn}]
.emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
}
}
}
return kTRUE;
}
const double GAIN_ACCEPTANCE_THRESHOLD = 0.3;
void GainMatchSX3::Terminate()
{
double backSlope[MAX_DET][MAX_BK] = {{0}};
bool backSlopeValid[MAX_DET][MAX_BK] = {{false}};
std::ofstream outFile("sx3_BackGains.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening sx3_BackGains.txt for writing!" << std::endl;
return;
}
// === Gain fit: (Up+Dn) vs Back, grouped by [id][bk] ===
for (int id = 0; id < MAX_DET; id++)
{
for (int bk = 0; bk < MAX_BK; bk++)
{
std::vector<double> bkE, udE;
// Collect all (Up+Dn, Back) for this id,bk
for (const auto &kv : dataPoints)
{
auto [cid, cbk, u, d] = kv.first;
if (cid != id || cbk != bk)
continue;
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
if ((eBk < 100) || (eUp < 100) || (eDn < 100))
continue;
bkE.push_back(eBk);
udE.push_back(eUp + eDn);
}
}
if (bkE.size() < 5)
continue; // not enough statistics
// Build graph with errors
const double fixedError = 10.0; // ADC channels
std::vector<double> exVals(udE.size(), 0.0); // no x error
std::vector<double> eyVals(udE.size(), fixedError); // constant y error
TGraphErrors g(udE.size(), udE.data(), bkE.data(),
exVals.data(), eyVals.data());
TF1 f("f", "[0]*x", 0, 16000);
f.SetParameter(0, 1.0); // initial slope
if (drawCanvases)
{
TCanvas *c = new TCanvas(Form("c_%d_%d", id, bk), "Back Fit", 800, 600);
g.SetTitle(Form("Detector %d Back %d: (Up+Dn) vs Back", id, bk));
g.SetMarkerStyle(20);
g.SetMarkerColor(kBlue);
g.Draw("AP");
g.Fit(&f, interactiveMode ? "Q" : "QNR");
if (verboseFit)
{
double chi2 = f.GetChisquare();
int ndf = f.GetNDF();
double reducedChi2 = (ndf != 0) ? chi2 / ndf : -1;
std::cout << Form("Det%d Back%d → Slope: %.4f | χ²/ndf = %.2f/%d = %.2f",
id, bk, f.GetParameter(0), chi2, ndf, reducedChi2)
<< std::endl;
}
if (interactiveMode)
{
c->Update();
gPad->WaitPrimitive();
}
else
{
c->Close();
}
}
else
{
g.Fit(&f, "QNR");
}
double slope = f.GetParameter(0);
if (std::abs(slope - 1.0) < 0.3) // sanity check
{
backSlope[id][bk] = slope;
backSlopeValid[id][bk] = true;
outFile << id << " " << bk << " " << slope << "\n";
printf("Back slope Det%d Bk%d → %.4f\n", id, bk, slope);
}
else
{
std::cerr << "Warning: Bad slope for Det" << id << " Bk" << bk
<< " slope=" << slope << std::endl;
}
}
}
outFile.close();
std::cout << "Back gain matching complete." << std::endl;
// === Create histograms ===
TH2F *hFVB = new TH2F("hFVB", "Corrected Up+Dn vs Corrected Back;Up+Dn E;Corrected Back E",
600, 0, 16000, 600, 0, 16000);
TH2F *hAsym = new TH2F("hAsym", "Up vs Dn divide corrected back;Up/Back E;Dn/Back E",
400, 0.0, 1.0, 400, 0.0, 1.0);
// Fill histograms using corrected back energies
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
if (!backSlopeValid[id][bk])
continue;
double slope = backSlope[id][bk];
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
double updn = eUp + eDn;
if (updn == 0 || eBk == 0)
continue;
double correctedBack = eBk * slope;
double asym = (eUp - eDn) / updn;
hFVB->Fill(updn,correctedBack );
hAsym->Fill(eUp / correctedBack, eDn / correctedBack);
}
}
}