modified: Armory/ClassPW.h modified: MakeVertex.C modified: TrackRecon.C
914 lines
39 KiB
C
Executable File
914 lines
39 KiB
C
Executable File
#define MakeVertex_cxx
|
|
|
|
#include "MakeVertex.h"
|
|
#include "Armory/ClassPW.h"
|
|
#include "Armory/HistPlotter.h"
|
|
|
|
#include <TH2.h>
|
|
#include <TStyle.h>
|
|
#include <TCanvas.h>
|
|
#include <TMath.h>
|
|
#include <TBranch.h>
|
|
#include "TVector3.h"
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <map>
|
|
#include <utility>
|
|
#include <algorithm>
|
|
|
|
// Global instances
|
|
PW pw_contr;
|
|
PW pwinstance;
|
|
TVector3 hitPos;
|
|
double qqqenergy, qqqtimestamp;
|
|
|
|
class Event
|
|
{
|
|
public:
|
|
Event(TVector3 p, double e1, double e2, double t1, double t2) : pos(p), Energy1(e1), Energy2(e2), Time1(t1), Time2(t2) {}
|
|
Event(TVector3 p, double e1, double e2, double t1, double t2, int c1, int c2) : pos(p), Energy1(e1), Energy2(e2), Time1(t1), Time2(t2), ch2(c1), ch1(c1) {}
|
|
|
|
TVector3 pos;
|
|
int ch1 = -1; // int(ch1/16) gives qqq id, ch1%16 gives ring#
|
|
int ch2 = -1; // int(ch2/16) gives qqq id, ch2%16 gives wedge#
|
|
double Energy1 = -1; // Front for QQQ, Anode for PC
|
|
double Energy2 = -1; // Back for QQQ, Cathode for PC
|
|
double Time1 = -1;
|
|
double Time2 = -1;
|
|
};
|
|
|
|
/*std::vector<Event>
|
|
Make_QQQClusters(const std::unordered_map<int,Event>& qqqvec) {
|
|
std::vector<Event> qqqevents; //input events, but combine NN energies
|
|
|
|
|
|
}*/
|
|
|
|
// Calibration globals
|
|
const int MAX_QQQ = 4;
|
|
const int MAX_RING = 16;
|
|
const int MAX_WEDGE = 16;
|
|
double qqqGain[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{0}}};
|
|
bool qqqGainValid[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{false}}};
|
|
double qqqCalib[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{0}}};
|
|
bool qqqCalibValid[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{false}}};
|
|
// TCutg *cutQQQ;
|
|
|
|
// PC Arrays
|
|
double pcSlope[48];
|
|
double pcIntercept[48];
|
|
|
|
HistPlotter *plotter;
|
|
|
|
bool HitNonZero;
|
|
bool sx3ecut;
|
|
bool qqqEcut;
|
|
|
|
void MakeVertex::Begin(TTree * /*tree*/)
|
|
{
|
|
TString option = GetOption();
|
|
plotter = new HistPlotter("Analyzer_QQQ.root", "TFILE");
|
|
|
|
pw_contr.ConstructGeo();
|
|
pwinstance.ConstructGeo();
|
|
|
|
// ---------------------------------------------------------
|
|
// 1. CRITICAL FIX: Initialize PC Arrays to Default (Raw)
|
|
// ---------------------------------------------------------
|
|
for (int i = 0; i < 48; i++)
|
|
{
|
|
pcSlope[i] = 1.0; // Default slope = 1 (preserves Raw energy)
|
|
pcIntercept[i] = 0.0; // Default intercept = 0
|
|
}
|
|
|
|
// Calculate Crossover Geometry ONCE
|
|
TVector3 a, c, diff;
|
|
double a2, ac, c2, adiff, cdiff, denom, alpha;
|
|
|
|
for (size_t i = 0; i < pwinstance.An.size(); i++)
|
|
{
|
|
a = pwinstance.An[i].first - pwinstance.An[i].second;
|
|
|
|
for (size_t j = 0; j < pwinstance.Ca.size(); j++)
|
|
{
|
|
c = pwinstance.Ca[j].first - pwinstance.Ca[j].second;
|
|
diff = pwinstance.An[i].first - pwinstance.Ca[j].first;
|
|
a2 = a.Dot(a);
|
|
c2 = c.Dot(c);
|
|
ac = a.Dot(c);
|
|
adiff = a.Dot(diff);
|
|
cdiff = c.Dot(diff);
|
|
denom = a2 * c2 - ac * ac;
|
|
alpha = (ac * cdiff - c2 * adiff) / denom;
|
|
|
|
Crossover[i][j][0].x = pwinstance.An[i].first.X() + alpha * a.X();
|
|
Crossover[i][j][0].y = pwinstance.An[i].first.Y() + alpha * a.Y();
|
|
Crossover[i][j][0].z = pwinstance.An[i].first.Z() + alpha * a.Z();
|
|
|
|
if (Crossover[i][j][0].z < -190 || Crossover[i][j][0].z > 190 || (i + j) % 24 == 12)
|
|
{
|
|
Crossover[i][j][0].z = 9999999;
|
|
}
|
|
|
|
Crossover[i][j][1].x = alpha;
|
|
Crossover[i][j][1].y = 0;
|
|
}
|
|
}
|
|
|
|
// Load PC Calibrations
|
|
std::ifstream inputFile("slope_intercept_results.txt");
|
|
if (inputFile.is_open())
|
|
{
|
|
std::string line;
|
|
int index;
|
|
double slope, intercept;
|
|
while (std::getline(inputFile, line))
|
|
{
|
|
std::stringstream ss(line);
|
|
ss >> index >> slope >> intercept;
|
|
if (index >= 0 && index <= 47)
|
|
{
|
|
pcSlope[index] = slope;
|
|
pcIntercept[index] = intercept;
|
|
}
|
|
}
|
|
inputFile.close();
|
|
}
|
|
else
|
|
{
|
|
std::cerr << "Error opening slope_intercept.txt" << std::endl;
|
|
}
|
|
|
|
// Load QQQ Cuts from file
|
|
// {
|
|
// std::string filename = "QQQ_PCCut.root";
|
|
// TFile *cutFile = TFile::Open(filename.c_str(), "READ");
|
|
// if (cutFile && !cutFile->IsZombie())
|
|
// {
|
|
// cutQQQ = (TCutg *)cutFile->Get("cutQQQPC");
|
|
// if (cutQQQ)
|
|
// {
|
|
// std::cout << "Loaded QQQ PC cut from " << filename << std::endl;
|
|
// }
|
|
// else
|
|
// {
|
|
// std::cerr << "Error: cutQQQPC not found in " << filename << std::endl;
|
|
// }
|
|
// cutFile->Close();
|
|
// }
|
|
// }
|
|
|
|
// ... (Load QQQ Gains and Calibs - same as before) ...
|
|
{
|
|
std::string filename = "qqq_GainMatch.dat";
|
|
std::ifstream infile(filename);
|
|
if (infile.is_open())
|
|
{
|
|
int det, ring, wedge;
|
|
double gainw, gainr;
|
|
while (infile >> det >> wedge >> ring >> gainw >> gainr)
|
|
{
|
|
qqqGain[det][wedge][ring] = gainw;
|
|
qqqGainValid[det][wedge][ring] = (gainw > 0);
|
|
// std::cout << "QQQ Gain Loaded: Det " << det << " Ring " << ring << " Wedge " << wedge << " GainW " << gainw << " GainR " << gainr << std::endl;
|
|
}
|
|
infile.close();
|
|
}
|
|
}
|
|
{
|
|
std::string filename = "qqq_Calib.dat";
|
|
std::ifstream infile(filename);
|
|
if (infile.is_open())
|
|
{
|
|
int det, ring, wedge;
|
|
double slope;
|
|
while (infile >> det >> wedge >> ring >> slope)
|
|
{
|
|
qqqCalib[det][wedge][ring] = slope;
|
|
qqqCalibValid[det][wedge][ring] = (slope > 0);
|
|
// std::cout << "QQQ Calib Loaded: Det " << det << " Ring " << ring << " Wedge " << wedge << " Slope " << slope << std::endl;
|
|
}
|
|
infile.close();
|
|
}
|
|
}
|
|
}
|
|
|
|
Bool_t MakeVertex::Process(Long64_t entry)
|
|
{
|
|
hitPos.Clear();
|
|
qqqenergy = -1;
|
|
qqqtimestamp = -1;
|
|
HitNonZero = false;
|
|
bool qqq1000cut = false;
|
|
b_sx3Multi->GetEntry(entry);
|
|
b_sx3ID->GetEntry(entry);
|
|
b_sx3Ch->GetEntry(entry);
|
|
b_sx3E->GetEntry(entry);
|
|
b_sx3T->GetEntry(entry);
|
|
b_qqqMulti->GetEntry(entry);
|
|
b_qqqID->GetEntry(entry);
|
|
b_qqqCh->GetEntry(entry);
|
|
b_qqqE->GetEntry(entry);
|
|
b_qqqT->GetEntry(entry);
|
|
b_pcMulti->GetEntry(entry);
|
|
b_pcID->GetEntry(entry);
|
|
b_pcCh->GetEntry(entry);
|
|
b_pcE->GetEntry(entry);
|
|
b_pcT->GetEntry(entry);
|
|
|
|
sx3.CalIndex();
|
|
qqq.CalIndex();
|
|
pc.CalIndex();
|
|
|
|
// if(sx3.multi>1) {
|
|
// std::cout << "-----" << std::endl;
|
|
// for(int i=0; i<sx3.multi; i++) {
|
|
// std::cout << std::setprecision(16) << "sx3"<< sx3.id[i] << " " << sx3.ch[i] << " " << sx3.e[i] << " " << sx3.t[i] - sx3.t[0] << std::endl;
|
|
// }
|
|
// }
|
|
// return kTRUE;
|
|
// QQQ Processing
|
|
|
|
int qqqCount = 0;
|
|
int qqqAdjCh = 0;
|
|
// REMOVE WHEN RERUNNING USING THE NEW CALIBRATION FILE
|
|
// for (int i = 0; i < qqq.multi; i++)
|
|
// {
|
|
// //if ((qqq.id[i] == 3 || qqq.id[i] == 1) && qqq.ch[i] < 16)
|
|
// if (qqq.id[i] == 1 && qqq.ch[i] < 16) //for run 12, 26Al
|
|
// {
|
|
// qqq.ch[i] = 16 - qqq.ch[i];
|
|
// }
|
|
// }
|
|
// for (int i = 0; i < qqq.multi; i++)
|
|
// {
|
|
// if (qqq.id[i] == 0 && qqq.ch[i] >= 16)
|
|
// {
|
|
// qqq.ch[i] = 31 - qqq.ch[i] + 16;
|
|
// }
|
|
// }
|
|
|
|
std::vector<Event> QQQ_Events, PC_Events;
|
|
std::vector<Event> QQQ_Events_Raw, PC_Events_Raw;
|
|
|
|
std::unordered_map<int, std::tuple<int, int, double, double>> qvecr[4], qvecw[4];
|
|
if (qqq.multi > 1)
|
|
{
|
|
// std::cout << "------" << std::endl;
|
|
for (int i = 0; i < qqq.multi; i++)
|
|
{
|
|
// std::cout << std::setprecision(16) << "qqq"<< qqq.id[i] << " " << std::string(qqq.ch[i]/16?"ring":"wedge") << qqq.ch[i]%16 << " " << qqq.e[i] << " " << qqq.t[i] - qqq.t[0] << std::endl;
|
|
if (qqq.ch[i] / 16)
|
|
{
|
|
if (qvecr[qqq.id[i]].find(qqq.ch[i]) != qvecr[qqq.id[i]].end())
|
|
std::cout << "mayday!" << std::endl;
|
|
qvecr[qqq.id[i]][qqq.ch[i]] = std::tuple(qqq.id[i], qqq.ch[i], qqq.e[i], qqq.t[i]);
|
|
}
|
|
else
|
|
{
|
|
if (qvecw[qqq.id[i]].find(qqq.ch[i]) != qvecw[qqq.id[i]].end())
|
|
std::cout << "mayday!" << std::endl;
|
|
qvecw[qqq.id[i]][qqq.ch[i]] = std::tuple(qqq.id[i], qqq.ch[i], qqq.e[i], qqq.t[i]);
|
|
}
|
|
}
|
|
}
|
|
// Now, qvecr[i] has all ring events of qqq#i, qvecw[i] has all wedge events of
|
|
|
|
bool PCQQQTimeCut = false;
|
|
for (int i = 0; i < qqq.multi; i++)
|
|
{
|
|
plotter->Fill2D("QQQ_Index_Vs_Energy", 16 * 8, 0, 16 * 8, 2000, 0, 16000, qqq.index[i], qqq.e[i], "hRawQQQ");
|
|
|
|
for (int j = 0; j < qqq.multi; j++)
|
|
{
|
|
if (j == i)
|
|
continue;
|
|
plotter->Fill2D("QQQ_Coincidence_Matrix", 16 * 8, 0, 16 * 8, 16 * 8, 0, 16 * 8, qqq.index[i], qqq.index[j], "hRawQQQ");
|
|
}
|
|
|
|
for (int k = 0; k < pc.multi; k++)
|
|
{
|
|
if (pc.index[k] < 24 && pc.e[k] > 50)
|
|
{
|
|
plotter->Fill2D("QQQ_Vs_Anode_Energy", 400, 0, 4000, 1000, 0, 16000, qqq.e[i], pc.e[k], "hRawQQQ");
|
|
plotter->Fill2D("QQQ_Vs_PC_Index", 16 * 8, 0, 16 * 8, 24, 0, 24, qqq.index[i], pc.index[k], "hRawQQQ");
|
|
}
|
|
else if (pc.index[k] >= 24 && pc.e[k] > 50)
|
|
{
|
|
plotter->Fill2D("QQQ_Vs_Cathode_Energy", 400, 0, 4000, 1000, 0, 16000, qqq.e[i], pc.e[k], "hRawQQQ");
|
|
}
|
|
}
|
|
|
|
for (int j = i + 1; j < qqq.multi; j++)
|
|
{
|
|
if (qqq.id[i] == qqq.id[j])
|
|
{
|
|
qqqCount++;
|
|
|
|
int chWedge = -1;
|
|
int chRing = -1;
|
|
double eWedge = 0.0;
|
|
double eWedgeMeV = 0.0;
|
|
double eRing = 0.0;
|
|
double eRingMeV = 0.0;
|
|
double tRing = 0.0;
|
|
double tWedge = 0.0;
|
|
|
|
if (qqq.ch[i] < 16 && qqq.ch[j] >= 16 && qqqGainValid[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16])
|
|
{
|
|
chWedge = qqq.ch[i];
|
|
eWedge = qqq.e[i] * qqqGain[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16];
|
|
chRing = qqq.ch[j] - 16;
|
|
eRing = qqq.e[j];
|
|
tRing = static_cast<double>(qqq.t[j]);
|
|
tWedge = static_cast<double>(qqq.t[i]);
|
|
}
|
|
else if (qqq.ch[j] < 16 && qqq.ch[i] >= 16 && qqqGainValid[qqq.id[j]][qqq.ch[j]][qqq.ch[i] - 16])
|
|
{
|
|
chWedge = qqq.ch[j];
|
|
eWedge = qqq.e[j] * qqqGain[qqq.id[j]][qqq.ch[j]][qqq.ch[i] - 16];
|
|
chRing = qqq.ch[i] - 16;
|
|
eRing = qqq.e[i];
|
|
tRing = static_cast<double>(qqq.t[i]);
|
|
tWedge = static_cast<double>(qqq.t[j]);
|
|
}
|
|
else
|
|
continue;
|
|
|
|
plotter->Fill1D("Wedgetime_Vs_Ringtime", 100, -1000, 1000, tWedge - tRing, "hTiming");
|
|
plotter->Fill2D("RingE_vs_Index", 16 * 4, 0, 16 * 4, 1000, 0, 16000, chRing + qqq.id[i] * 16, eRing, "hRawQQQ");
|
|
plotter->Fill2D("WedgeE_vs_Index", 16 * 4, 0, 16 * 4, 1000, 0, 16000, chWedge + qqq.id[i] * 16, eWedge, "hRawQQQ");
|
|
|
|
if (qqqCalibValid[qqq.id[i]][chWedge][chRing])
|
|
{
|
|
eWedgeMeV = eWedge * qqqCalib[qqq.id[i]][chWedge][chRing] / 1000;
|
|
eRingMeV = eRing * qqqCalib[qqq.id[i]][chWedge][chRing] / 1000;
|
|
|
|
if (eRingMeV / eWedgeMeV > 3.0 || eRingMeV / eWedgeMeV < 1.0 / 3.0)
|
|
continue;
|
|
// if(eRingMeV<4.0 || eWedgeMeV<4.0) continue;
|
|
|
|
double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5);
|
|
double rho = 50. + (50. / 16.) * (chRing + 0.5); //"?"
|
|
|
|
Event qqqevent(TVector3(rho * TMath::Cos(theta), rho * TMath::Sin(theta), 100), eRingMeV, eWedgeMeV, tRing, tWedge, chRing + qqq.id[i] * 16, chWedge + qqq.id[i] * 16);
|
|
Event qqqeventr(TVector3(rho * TMath::Cos(theta), rho * TMath::Sin(theta),100), eRing, eWedge, tRing, tWedge, chRing + qqq.id[i] * 16, chWedge + qqq.id[i] * 16);
|
|
QQQ_Events.push_back(qqqevent);
|
|
QQQ_Events_Raw.push_back(qqqeventr);
|
|
plotter->Fill2D("QQQCartesianPlot", 200, -100, 100, 200, -100, 100, rho * TMath::Cos(theta), rho * TMath::Sin(theta), "hCalQQQ");
|
|
plotter->Fill2D("QQQCartesianPlot" + std::to_string(qqq.id[i]), 200, -100, 100, 200, -100, 100, rho * TMath::Cos(theta), rho * TMath::Sin(theta), "hCalQQQ");
|
|
if (PCQQQTimeCut)
|
|
{
|
|
plotter->Fill2D("PC_XY_Projection_QQQ_TimeCut" + std::to_string(qqq.id[i]), 400, -100, 100, 400, -100, 100, rho * TMath::Cos(theta), rho * TMath::Sin(theta), "hPCQQQ");
|
|
}
|
|
plotter->Fill2D("PC_XY_Projection_QQQ" + std::to_string(qqq.id[i]), 400, -100, 100, 400, -100, 100, rho * TMath::Cos(theta), rho * TMath::Sin(theta), "hPCQQQ");
|
|
}
|
|
else
|
|
continue;
|
|
|
|
plotter->Fill2D("WedgeE_Vs_RingECal", 1000, 0, 10, 1000, 0, 10, eWedgeMeV, eRingMeV, "hCalQQQ");
|
|
plotter->Fill2D("WedgeE_Vs_RingECal_selected", 1000, 0, 10, 1000, 0, 10, eWedgeMeV, eRingMeV, "hCalQQQ");
|
|
|
|
for (int k = 0; k < pc.multi; k++)
|
|
{
|
|
plotter->Fill2D("RingCh_vs_Anode_Index", 16 * 4, 0, 16 * 4, 24, 0, 24, chRing + qqq.id[i] * 16, pc.index[k], "hRawQQQ");
|
|
plotter->Fill2D("WedgeCh_vs_Anode_Index", 16 * 4, 0, 16 * 4, 24, 0, 24, chWedge + qqq.id[i] * 16, pc.index[k], "hRawQQQ");
|
|
plotter->Fill2D("WedgeCh_vs_Anode_Index" + std::to_string(qqq.id[i]), 16 * 4, 0, 16 * 4, 24, 0, 24, chWedge + qqq.id[i] * 16, pc.index[k]);
|
|
plotter->Fill2D("RingCh_vs_Cathode_Index", 16 * 4, 0, 16 * 4, 24, 24, 48, chRing + qqq.id[i] * 16, pc.index[k], "hRawQQQ");
|
|
plotter->Fill2D("WedgeCh_vs_Cathode_Index", 16 * 4, 0, 16 * 4, 24, 24, 48, chWedge + qqq.id[i] * 16, pc.index[k], "hRawQQQ");
|
|
|
|
if (pc.index[k] < 24 && pc.e[k] > 50)
|
|
{
|
|
plotter->Fill2D("Timing_Difference_QQQ_PC", 500, -2000, 2000, 16, 0, 16, tRing - static_cast<double>(pc.t[k]), chRing, "hTiming");
|
|
plotter->Fill2D("DelT_Vs_QQQRingECal", 500, -2000, 2000, 1000, 0, 10, tRing - static_cast<double>(pc.t[k]), eRingMeV, "hTiming");
|
|
plotter->Fill2D("CalibratedQQQEvsPCE_R", 1000, 0, 10, 2000, 0, 200, eRingMeV, pc.e[k]/ 151.461, "hPCQQQ"); // division by 151.5 for rough conversion of PC energy to keV from the slope on teh Source data
|
|
plotter->Fill2D("CalibratedQQQEvsPCE_W", 1000, 0, 10, 2000, 0, 200, eWedgeMeV, pc.e[k]/ 151.461, "hPCQQQ");// division by 151.5 for rough conversion of PC energy to keV from the slope on teh Source data
|
|
if (tRing - static_cast<double>(pc.t[k]) < -150) // proton tests, 27Al
|
|
// if (tRing - static_cast<double>(pc.t[k]) < -150 && tRing - static_cast<double>(pc.t[k]) > -450) // 27Al
|
|
// if (tRing - static_cast<double>(pc.t[k]) < -70 && tRing - static_cast<double>(pc.t[k]) > -150) // 17F
|
|
{
|
|
PCQQQTimeCut = true;
|
|
}
|
|
}
|
|
|
|
if (pc.index[k] >= 24 && pc.e[k] > 50)
|
|
{
|
|
plotter->Fill2D("Timing_Difference_QQQ_PC_Cathode", 500, -2000, 2000, 16, 0, 16, tRing - static_cast<double>(pc.t[k]), chRing, "hTiming");
|
|
}
|
|
} // end of pc k loop
|
|
|
|
if (!HitNonZero)
|
|
{
|
|
double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5);
|
|
double rho = 50. + (50. / 16.) * (chRing + 0.5); //"?"
|
|
double x = rho * TMath::Cos(theta);
|
|
double y = rho * TMath::Sin(theta);
|
|
hitPos.SetXYZ(x, y, 100);
|
|
qqqenergy = eRingMeV;
|
|
qqqtimestamp = tRing;
|
|
HitNonZero = true;
|
|
}
|
|
} // if j==i
|
|
} // j loop end
|
|
} // i loop end
|
|
|
|
plotter->Fill1D("QQQ_Multiplicity", 10, 0, 10, qqqCount, "hRawQQQ");
|
|
|
|
/*if(QQQ_Events.size()>=1) {
|
|
std::cout<< " ---->" << std::endl;
|
|
for(auto qe: QQQ_Events) {
|
|
std::cout << qe.ch1/16 << " " <<qe.ch2/16 << " " << qe.ch1%16 << " "<< qe.ch2%16 << " " << qe.Energy1 << " " << qe.Energy2 << " " << std::endl;
|
|
}
|
|
}*/
|
|
|
|
typedef std::unordered_map<int, std::tuple<int, double, double>> WireEvent; // this stores nearest neighbour wire events, or a 'cluster'
|
|
WireEvent aWireEvents, cWireEvents; // naming for book keeping
|
|
aWireEvents.clear();
|
|
aWireEvents.reserve(24);
|
|
|
|
// PC Gain Matching and Filling
|
|
double anodeT = -99999;
|
|
double cathodeT = 99999;
|
|
int anodeIndex = -1;
|
|
int cathodeIndex = -1;
|
|
for (int i = 0; i < pc.multi; i++)
|
|
{
|
|
if (pc.e[i] > 50)
|
|
{
|
|
plotter->Fill2D("PC_Index_Vs_Energy", 48, 0, 48, 2000, 0, 30000, pc.index[i], static_cast<double>(pc.e[i]), "hRawPC");
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (pc.index[i] < 48)
|
|
{
|
|
pc.e[i] = pcSlope[pc.index[i]] * pc.e[i] + pcIntercept[pc.index[i]];
|
|
plotter->Fill2D("PC_Index_VS_GainMatched_Energy", 48, 0, 48, 2000, 0, 30000, pc.index[i], pc.e[i], "hGMPC");
|
|
}
|
|
|
|
if (pc.index[i] < 24)
|
|
{
|
|
anodeT = static_cast<double>(pc.t[i]);
|
|
anodeIndex = pc.index[i];
|
|
aWireEvents[pc.index[i]] = std::tuple(pc.index[i], pc.e[i], static_cast<double>(pc.t[i]));
|
|
}
|
|
else
|
|
{
|
|
cathodeT = static_cast<double>(pc.t[i]);
|
|
cathodeIndex = pc.index[i] - 24;
|
|
cWireEvents[pc.index[i] - 24] = std::tuple(pc.index[i] - 24, pc.e[i], static_cast<double>(pc.t[i]));
|
|
}
|
|
|
|
if (anodeT != -99999 && cathodeT != 99999)
|
|
{
|
|
for (int j = 0; j < qqq.multi; j++)
|
|
{
|
|
plotter->Fill1D("PC_Time_qqq", 200, -2000, 2000, anodeT - cathodeT, "hTiming");
|
|
plotter->Fill2D("PC_Time_Vs_QQQ_ch", 200, -2000, 2000, 16 * 8, 0, 16 * 8, anodeT - cathodeT, qqq.ch[j], "hTiming");
|
|
plotter->Fill2D("PC_Time_vs_AIndex", 200, -2000, 2000, 24, 0, 24, anodeT - cathodeT, anodeIndex, "hTiming");
|
|
plotter->Fill2D("PC_Time_vs_CIndex", 200, -2000, 2000, 24, 0, 24, anodeT - cathodeT, cathodeIndex, "hTiming");
|
|
// plotter->Fill1D("PC_Time_A" + std::to_string(anodeIndex) + "_C" + std::to_string(cathodeIndex), 200, -1000, 1000, anodeT - cathodeT, "TimingPC");
|
|
}
|
|
|
|
for (int j = 0; j < sx3.multi; j++)
|
|
{
|
|
plotter->Fill1D("PC_Time_sx3", 200, -2000, 2000, anodeT - cathodeT, "hTiming");
|
|
}
|
|
|
|
plotter->Fill1D("PC_Time", 200, -2000, 2000, anodeT - cathodeT, "hTiming");
|
|
}
|
|
|
|
for (int j = i + 1; j < pc.multi; j++)
|
|
{
|
|
plotter->Fill2D("PC_Coincidence_Matrix", 48, 0, 48, 48, 0, 48, pc.index[i], pc.index[j], "hRawPC");
|
|
plotter->Fill2D("PC_Coincidence_Matrix_anodeMinusCathode_lt_-200_" + std::to_string(anodeT - cathodeT < -200), 48, 0, 48, 48, 0, 48, pc.index[i], pc.index[j], "hRawPC");
|
|
plotter->Fill2D("Anode_V_Anode", 24, 0, 24, 24, 0, 24, pc.index[i], pc.index[j], "hGMPC");
|
|
}
|
|
}
|
|
|
|
anodeHits.clear();
|
|
cathodeHits.clear();
|
|
corrcatMax.clear();
|
|
|
|
int aID = 0;
|
|
int cID = 0;
|
|
double aE = 0;
|
|
double cE = 0;
|
|
double aESum = 0;
|
|
double cESum = 0;
|
|
double aEMax = 0;
|
|
int aIDMax = 0;
|
|
|
|
for (int i = 0; i < pc.multi; i++)
|
|
{
|
|
// if (pc.e[i] > 100)
|
|
{
|
|
if (pc.index[i] < 24)
|
|
{
|
|
anodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
|
|
}
|
|
else if (pc.index[i] >= 24)
|
|
{
|
|
cathodeHits.push_back(std::pair<int, double>(pc.index[i] - 24, pc.e[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
std::sort(anodeHits.begin(), anodeHits.end(), [](std::pair<int, double> a, std::pair<int, double> b)
|
|
{ return a.first < b.first; });
|
|
std::sort(cathodeHits.begin(), cathodeHits.end(), [](std::pair<int, double> a, std::pair<int, double> b)
|
|
{ return a.first < b.first; });
|
|
|
|
std::vector<std::vector<std::tuple<int, double, double>>> aClusters = pwinstance.Make_Clusters(aWireEvents);
|
|
std::vector<std::vector<std::tuple<int, double, double>>> cClusters = pwinstance.Make_Clusters(cWireEvents);
|
|
|
|
std::vector<std::pair<double, double>> sumE_AC;
|
|
for (auto aCluster : aClusters)
|
|
{
|
|
for (auto cCluster : cClusters)
|
|
{
|
|
if(aCluster.size()<=1 && cCluster.size()<=1) continue;
|
|
auto [crossover, alpha, apSumE, cpSumE, apMaxE, cpMaxE, apTSMaxE, cpTSMaxE] = pwinstance.FindCrossoverProperties(aCluster, cCluster);
|
|
if (alpha != 9999999 && apSumE != -1)
|
|
{
|
|
// Event PCEvent(crossover,apMaxE,cpMaxE,apTSMaxE,cpTSMaxE);
|
|
// Event PCEvent(crossover,apSumE,cpSumE,apTSMaxE,cpTSMaxE);
|
|
Event PCEvent(crossover, apSumE, cpMaxE, apTSMaxE, cpTSMaxE); // run12 shows cathode-max and anode-sum provide best dE signals.
|
|
// std::cout << apSumE << " " << crossover.Perp() << " " << apMaxE << " " << apTSMaxE << std::endl;
|
|
PC_Events.push_back(PCEvent);
|
|
sumE_AC.push_back(std::pair(apSumE, cpSumE));
|
|
}
|
|
}
|
|
}
|
|
if (QQQ_Events.size() && PC_Events.size())
|
|
plotter->Fill2D("PCEv_vs_QQQEv", 20, 0, 20, 20, 0, 20, QQQ_Events.size(), PC_Events.size());
|
|
|
|
for (auto pcevent : PC_Events)
|
|
{
|
|
for (auto qqqevent : QQQ_Events)
|
|
{
|
|
plotter->Fill1D("dt_pcA_qqqR", 640, -2000, 2000, qqqevent.Time1 - pcevent.Time1);
|
|
plotter->Fill1D("dt_pcC_qqqW", 640, -2000, 2000, qqqevent.Time2 - pcevent.Time2);
|
|
plotter->Fill2D("dE_E_AnodeQQQR", 400, 0, 10, 800, 0, 40000, qqqevent.Energy1, pcevent.Energy1);
|
|
plotter->Fill2D("dE_E_CathodeQQQR", 400, 0, 10, 800, 0, 10000, qqqevent.Energy2, pcevent.Energy2);
|
|
double sinTheta = TMath::Sin((qqqevent.pos - TVector3(0, 0, 90)).Theta()); /// TMath::Sin((TVector3(51.5,0,128.) - TVector3(0,0,90)).Theta());
|
|
plotter->Fill2D("dE2_E_AnodeQQQR", 400, 0, 10, 800, 0, 40000, qqqevent.Energy1, pcevent.Energy1 * sinTheta);
|
|
plotter->Fill2D("dE2_E_CathodeQQQR", 400, 0, 10, 800, 0, 10000, qqqevent.Energy2, pcevent.Energy2 * sinTheta);
|
|
|
|
if (qqqevent.pos.Phi() <= pcevent.pos.Phi() + TMath::Pi() / 4. && qqqevent.pos.Phi() >= pcevent.pos.Phi() - TMath::Pi() / 4. && qqqevent.Time1 - pcevent.Time1 < -150 && qqqevent.Time2 - pcevent.Time2 < -300)
|
|
{
|
|
plotter->Fill1D("PCZ", 800, -200, 200, pcevent.pos.Z(), "phicut");
|
|
double pcz_guess = 37.0 / TMath::Tan((qqqevent.pos - TVector3(0, 0, 90)).Theta()) + 90; // this is ideally kept to be all QQQ+userinput for calibration of pcz
|
|
plotter->Fill2D("pczguess_vs_pc", 300, 0, 200, 150, 0, 200, pcz_guess, pcevent.pos.Z(), "phicut");
|
|
plotter->Fill2D("pczguess_vs_pc_phi=" + std::to_string(qqqevent.pos.Phi() * 180. / M_PI), 100, 0, 200, 150, 0, 200, pcz_guess, pcevent.pos.Z(), "phicut");
|
|
// plotter->Fill1D("PCZ",800,-200,200,pcevent.pos.Z(),"phicut");
|
|
}
|
|
}
|
|
}
|
|
// HALFTIME! Can stop here in future versions
|
|
// return kTRUE;
|
|
|
|
if (anodeHits.size() >= 1 && cathodeHits.size() >= 1)
|
|
{
|
|
// 2. CRITICAL FIX: Define reference vector 'a'
|
|
// In Analyzer.cxx, 'a' was left over from the loop. We use the first anode wire as reference here.
|
|
// (Assuming pwinstance.An is populated and wires are generally parallel).
|
|
TVector3 refAnode = pwinstance.An[0].first - pwinstance.An[0].second;
|
|
|
|
{
|
|
for (const auto &anode : anodeHits)
|
|
{
|
|
aID = anode.first;
|
|
aE = anode.second;
|
|
aESum += aE;
|
|
if (aE > aEMax)
|
|
{
|
|
aEMax = aE;
|
|
aIDMax = aID;
|
|
}
|
|
}
|
|
|
|
for (const auto &cathode : cathodeHits)
|
|
{
|
|
cID = cathode.first;
|
|
cE = cathode.second;
|
|
plotter->Fill2D("AnodeMax_Vs_Cathode_Coincidence_Matrix", 24, 0, 24, 24, 0, 24, aIDMax, cID, "hRawPC");
|
|
plotter->Fill2D("Anode_Vs_Cathode_Coincidence_Matrix", 24, 0, 24, 24, 0, 24, aID, cID, "hRawPC");
|
|
plotter->Fill2D("Anode_vs_CathodeE", 2000, 0, 30000, 2000, 0, 30000, aE, cE, "hGMPC");
|
|
plotter->Fill2D("CathodeMult_V_CathodeE", 6, 0, 6, 2000, 0, 30000, cathodeHits.size(), cE, "hGMPC");
|
|
for (int j = -4; j < 3; j++)
|
|
{
|
|
if ((aIDMax + 24 + j) % 24 == 23 - cID)
|
|
{
|
|
corrcatMax.push_back(std::pair<int, double>(cID, cE));
|
|
cESum += cE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TVector3 anodeIntersection, vector_closest_to_z;
|
|
anodeIntersection.Clear();
|
|
vector_closest_to_z.Clear();
|
|
if (corrcatMax.size() > 0)
|
|
{
|
|
double x = 0, y = 0, z = 0;
|
|
for (const auto &corr : corrcatMax)
|
|
{
|
|
if (Crossover[aIDMax][corr.first][0].z > 9000000)
|
|
continue;
|
|
if (cESum > 0)
|
|
{
|
|
x += (corr.second) / cESum * Crossover[aIDMax][corr.first][0].x;
|
|
y += (corr.second) / cESum * Crossover[aIDMax][corr.first][0].y;
|
|
z += (corr.second) / cESum * Crossover[aIDMax][corr.first][0].z;
|
|
}
|
|
}
|
|
if (x == 0 && y == 0 && z == 0)
|
|
;
|
|
// to ignore events with no valid crossover points
|
|
else
|
|
anodeIntersection = TVector3(x, y, z);
|
|
// << "Anode Intersection: " << anodeIntersection.X() << ", " << anodeIntersection.Y() << ", " << anodeIntersection.Z() << std::endl;
|
|
}
|
|
bool PCQQQPhiCut = false;
|
|
// flip the algorithm for cathode 1 multi anode events
|
|
if ((hitPos.Phi() > (anodeIntersection.Phi() - TMath::PiOver4())) && (hitPos.Phi() < (anodeIntersection.Phi() + TMath::PiOver4())))
|
|
{
|
|
PCQQQPhiCut = true;
|
|
}
|
|
|
|
for (double Tz = 60; Tz <= 100; Tz += 1.0)
|
|
{
|
|
TVector3 TargetPos(0, 0, Tz);
|
|
if (PCQQQPhiCut && anodeIntersection.Perp() > 0 && anodeIntersection.Z() != 0 && cathodeHits.size() >= 2)
|
|
{
|
|
plotter->Fill2D("Inttheta_vs_QQQtheta_TC" + std::to_string(PCQQQTimeCut) + "_TZ" + std::to_string(Tz), 400, 0, 180, 90, 0, 90, (anodeIntersection - TargetPos).Theta() * 180. / TMath::Pi(), (hitPos - TargetPos).Theta() * 180. / TMath::Pi(), "TPosVariation");
|
|
// plotter->Fill2D("R_ratio_to_Z_ratio" + std::to_string(PCQQQTimeCut) + "_TZ" + std::to_string(Tz), 100, -2, 2, 100, -2, 2, (anodeIntersection - TargetPos).Z()/(hitPos-TargetPos).Z(), ((anodeIntersection - TargetPos).Perp()+2.5)/(hitPos-TargetPos).Perp(), "TPosVariation");
|
|
}
|
|
}
|
|
|
|
if (anodeIntersection.Z() != 0 && anodeIntersection.Perp() > 0 && HitNonZero)
|
|
{
|
|
plotter->Fill1D("PC_Z_Projection", 600, -300, 300, anodeIntersection.Z(), "hPCzQQQ");
|
|
plotter->Fill2D("Z_Proj_VsDelTime", 600, -300, 300, 200, -2000, 2000, anodeIntersection.Z(), anodeT - cathodeT, "hPCzQQQ");
|
|
plotter->Fill2D("IntPhi_vs_QQQphi", 100, -200, 200, 80, -200, 200, anodeIntersection.Phi() * 180. / TMath::Pi(), hitPos.Phi() * 180. / TMath::Pi(), "hPCQQQ");
|
|
// plotter->Fill2D("Inttheta_vs_QQQtheta", 90, 0, 180, 20, 0, 45, anodeIntersection.Theta() * 180. / TMath::Pi(), hitPos.Theta() * 180. / TMath::Pi(), "hPCQQQ");
|
|
// plotter->Fill2D("Inttheta_vs_QQQtheta_TC" + std::to_string(PCQQQTimeCut)+ "_PC"+std::to_string(PCQQQPhiCut), 90, 0, 180, 20, 0, 45, anodeIntersection.Theta() * 180. / TMath::Pi(), hitPos.Theta() * 180. / TMath::Pi(), "hPCQQQ");
|
|
plotter->Fill2D("IntPhi_vs_QQQphi_TC" + std::to_string(PCQQQTimeCut) + "PhiC" + std::to_string(PCQQQPhiCut), 100, -200, 200, 80, -200, 200, anodeIntersection.Phi() * 180. / TMath::Pi(), hitPos.Phi() * 180. / TMath::Pi(), "hPCQQQ");
|
|
}
|
|
if (anodeIntersection.Z() != 0 && cathodeHits.size() >= 2)
|
|
plotter->Fill1D("PC_Z_Projection_TC" + std::to_string(PCQQQTimeCut) + "PhiC" + std::to_string(PCQQQPhiCut), 600, -300, 300, anodeIntersection.Z(), "hPCzQQQ");
|
|
|
|
if (anodeIntersection.Z() != 0 && cathodeHits.size() == 1)
|
|
{
|
|
plotter->Fill1D("PC_Z_proj_1C", 600, -300, 300, anodeIntersection.Z(), "hPCzQQQ");
|
|
plotter->Fill2D("IntersectionPhi_vs_AnodeZ_1C", 400, -200, 200, 600, -300, 300, anodeIntersection.Phi() * 180. / TMath::Pi(), anodeIntersection.Z(), "hPCzQQQ");
|
|
}
|
|
|
|
if (anodeIntersection.Z() != 0 && cathodeHits.size() == 2)
|
|
{
|
|
plotter->Fill1D("PC_Z_proj_2C", 600, -300, 300, anodeIntersection.Z(), "hPCzQQQ");
|
|
plotter->Fill2D("IntersectionPhi_vs_AnodeZ_2C", 400, -200, 200, 600, -300, 300, anodeIntersection.Phi() * 180. / TMath::Pi(), anodeIntersection.Z(), "hGMPC");
|
|
}
|
|
if (anodeIntersection.Z() != 0 && cathodeHits.size() > 2)
|
|
{
|
|
plotter->Fill1D("PC_Z_proj_nC", 600, -300, 300, anodeIntersection.Z(), "hPCzQQQ");
|
|
plotter->Fill2D("IntersectionPhi_vs_AnodeZ_nC", 400, -200, 200, 600, -300, 300, anodeIntersection.Phi() * 180. / TMath::Pi(), anodeIntersection.Z(), "hGMPC");
|
|
}
|
|
if (anodeHits.size() > 0 && cathodeHits.size() > 0)
|
|
plotter->Fill2D("AHits_vs_CHits", 12, 0, 11, 6, 0, 5, anodeHits.size(), cathodeHits.size(), "hRawPC");
|
|
|
|
// make another plot with nearest neighbour constraint
|
|
bool hasNeighbourAnodes = false;
|
|
bool hasNeighbourCathodes = false;
|
|
|
|
// 1. Check Anodes for neighbours (including wrap-around 0-23)
|
|
for (size_t i = 0; i < anodeHits.size(); i++)
|
|
{
|
|
for (size_t j = i + 1; j < anodeHits.size(); j++)
|
|
{
|
|
int diff = std::abs(anodeHits[i].first - anodeHits[j].first);
|
|
if (diff == 1 || diff == 23)
|
|
{ // 23 handles the cylindrical wrap
|
|
hasNeighbourAnodes = true;
|
|
break;
|
|
}
|
|
}
|
|
if (hasNeighbourAnodes)
|
|
break;
|
|
}
|
|
|
|
// 2. Check Cathodes for neighbours (including wrap-around 0-23)
|
|
for (size_t i = 0; i < cathodeHits.size(); i++)
|
|
{
|
|
for (size_t j = i + 1; j < cathodeHits.size(); j++)
|
|
{
|
|
int diff = std::abs(cathodeHits[i].first - cathodeHits[j].first);
|
|
if (diff == 1 || diff == 23)
|
|
{
|
|
hasNeighbourCathodes = true;
|
|
break;
|
|
}
|
|
}
|
|
if (hasNeighbourCathodes)
|
|
break;
|
|
}
|
|
|
|
// ---------------------------------------------------------
|
|
// FILL PLOTS
|
|
// ---------------------------------------------------------
|
|
if (anodeHits.size() > 0 && cathodeHits.size() > 0)
|
|
{
|
|
plotter->Fill2D("AHits_vs_CHits_NA" + std::to_string(hasNeighbourAnodes), 12, 0, 11, 6, 0, 5, anodeHits.size(), cathodeHits.size(), "hRawPC");
|
|
plotter->Fill2D("AHits_vs_CHits_NC" + std::to_string(hasNeighbourCathodes), 12, 0, 11, 6, 0, 5, anodeHits.size(), cathodeHits.size(), "hRawPC");
|
|
|
|
// Constraint Plot: Only fill if BOTH planes have adjacent hits
|
|
// This effectively removes events with only isolated single-wire hits (noise)
|
|
if (hasNeighbourAnodes && hasNeighbourCathodes)
|
|
{
|
|
plotter->Fill2D("AHits_vs_CHits_NN", 12, 0, 11, 6, 0, 5, anodeHits.size(), cathodeHits.size(), "hRawPC");
|
|
}
|
|
}
|
|
|
|
if (HitNonZero && anodeIntersection.Z() != 0)
|
|
{
|
|
pw_contr.CalTrack2(hitPos, anodeIntersection);
|
|
plotter->Fill1D("VertexRecon", 600, -1300, 1300, pw_contr.GetZ0());
|
|
plotter->Fill1D("VertexRecon_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, pw_contr.GetZ0());
|
|
|
|
if (cathodeHits.size() == 2)
|
|
plotter->Fill1D("VertexRecon_2c_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, pw_contr.GetZ0());
|
|
|
|
TVector3 x2(anodeIntersection), x1(hitPos);
|
|
|
|
TVector3 v = x2 - x1;
|
|
double t_minimum = -1.0 * (x1.X() * v.X() + x1.Y() * v.Y()) / (v.X() * v.X() + v.Y() * v.Y());
|
|
vector_closest_to_z = x1 + t_minimum * v;
|
|
|
|
plotter->Fill1D("VertexRecon_Z_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, vector_closest_to_z.Z(), "customVertex");
|
|
if (vector_closest_to_z.Perp() < 20)
|
|
{
|
|
plotter->Fill1D("VertexRecon_RadialCut_Z_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, vector_closest_to_z.Z(), "customVertex");
|
|
}
|
|
|
|
plotter->Fill2D("VertexRecon_XY_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 100, -100, 100, 100, -100, 100, vector_closest_to_z.X(), vector_closest_to_z.Y(), "customVertex");
|
|
if (cathodeHits.size() == 2)
|
|
{
|
|
plotter->Fill1D("VertexRecon2C_Z_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, vector_closest_to_z.Z(), "customVertex");
|
|
if (vector_closest_to_z.Perp() < 20)
|
|
{
|
|
plotter->Fill1D("VertexRecon2C_RadialCut_Z_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, vector_closest_to_z.Z(), "customVertex");
|
|
}
|
|
plotter->Fill2D("VertexRecon2C_XY_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 100, -100, 100, 100, -100, 100, vector_closest_to_z.X(), vector_closest_to_z.Y(), "customVertex");
|
|
plotter->Fill2D("VertexRecon2C_RhoZ_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 100, -100, 100, 600, -1300, 1300, vector_closest_to_z.Perp(), vector_closest_to_z.Z(), "customVertex");
|
|
plotter->Fill2D("VertexRecon2C_Z_vs_QQQE_TC" + std::to_string(PCQQQTimeCut) + "_PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, 800, 0, 20000, vector_closest_to_z.Z(), qqqenergy, "customVertex");
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < qqq.multi; i++)
|
|
{
|
|
if (anodeIntersection.Perp() > 0)
|
|
{ // suppress x,y=0,0 events
|
|
if (PCQQQTimeCut)
|
|
{
|
|
plotter->Fill2D("PC_XY_Projection_QQQ_TimeCut" + std::to_string(qqq.id[i]), 400, -100, 100, 400, -100, 100, anodeIntersection.X(), anodeIntersection.Y(), "hPCQQQ");
|
|
}
|
|
plotter->Fill2D("PC_XY_Projection_QQQ" + std::to_string(qqq.id[i]), 400, -100, 100, 400, -100, 100, anodeIntersection.X(), anodeIntersection.Y(), "hPCQQQ");
|
|
}
|
|
for (int j = i + 1; j < qqq.multi; j++)
|
|
{
|
|
if (qqq.id[i] == qqq.id[j])
|
|
{
|
|
int chWedge = -1;
|
|
int chRing = -1;
|
|
double eWedge = 0.0;
|
|
double eWedgeMeV = 0.0;
|
|
double eRing = 0.0;
|
|
double eRingMeV = 0.0;
|
|
double tRing = 0.0;
|
|
int qqqID = -1;
|
|
if (qqq.ch[i] < 16 && qqq.ch[j] >= 16 && qqqGainValid[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16])
|
|
{
|
|
chWedge = qqq.ch[i];
|
|
eWedge = qqq.e[i] * qqqGain[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16];
|
|
chRing = qqq.ch[j] - 16;
|
|
eRing = qqq.e[j];
|
|
tRing = static_cast<double>(qqq.t[j]);
|
|
qqqID = qqq.id[i];
|
|
}
|
|
else if (qqq.ch[j] < 16 && qqq.ch[i] >= 16 && qqqGainValid[qqq.id[j]][qqq.ch[j]][qqq.ch[i] - 16])
|
|
{
|
|
chWedge = qqq.ch[j];
|
|
eWedge = qqq.e[j] * qqqGain[qqq.id[j]][qqq.ch[j]][qqq.ch[i] - 16];
|
|
chRing = qqq.ch[i] - 16;
|
|
tRing = static_cast<double>(qqq.t[i]);
|
|
eRing = qqq.e[i];
|
|
qqqID = qqq.id[i];
|
|
}
|
|
else
|
|
continue;
|
|
|
|
if (qqqCalibValid[qqq.id[i]][chRing][chWedge])
|
|
{
|
|
eWedgeMeV = eWedge * qqqCalib[qqq.id[i]][chRing][chWedge] / 1000;
|
|
eRingMeV = eRing * qqqCalib[qqq.id[i]][chRing][chWedge] / 1000;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
// if (anodeIntersection.Z() != 0)
|
|
{
|
|
plotter->Fill2D("PC_Z_vs_QQQRing", 600, -300, 300, 16, 0, 16, anodeIntersection.Z(), chRing, "hPCzQQQ");
|
|
}
|
|
|
|
if (anodeIntersection.Z() != 0 && cathodeHits.size() == 2)
|
|
{
|
|
plotter->Fill2D("PC_Z_vs_QQQRing_2C", 600, -300, 300, 16, 0, 16, anodeIntersection.Z(), chRing, "hPCzQQQ");
|
|
plotter->Fill2D("PC_Z_vs_QQQRing_2C" + std::to_string(qqq.id[i]), 600, -300, 300, 16, 0, 16, anodeIntersection.Z(), chRing, "hPCzQQQ");
|
|
plotter->Fill2D("PC_Z_vs_QQQWedge_2C", 600, -300, 300, 16, 0, 16, anodeIntersection.Z(), chWedge, "hPCzQQQ");
|
|
}
|
|
plotter->Fill2D("VertexRecon_QQQRingTC" + std::to_string(PCQQQTimeCut) + "PhiC" + std::to_string(PCQQQPhiCut), 600, -1300, 1300, 16, 0, 16, vector_closest_to_z.Z(), chRing, "hPCQQQ");
|
|
double phi = TMath::ATan2(anodeIntersection.Y(), anodeIntersection.X()) * 180. / TMath::Pi();
|
|
plotter->Fill2D("PolarAngle_Vs_QQQWedge" + std::to_string(qqqID), 360, -360, 360, 16, 0, 16, phi, chWedge, "hPCQQQ");
|
|
// plotter->Fill2D("EdE_PC_vs_QQQ_timegate_ls1000"+std::to_string())
|
|
|
|
plotter->Fill2D("PC_Z_vs_QQQRing_Det" + std::to_string(qqqID), 600, -300, 300, 16, 0, 16, anodeIntersection.Z(), chRing, "hPCQQQ");
|
|
// double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5);
|
|
// double rho = 50. + 40. / 16. * (chRing + 0.5);
|
|
|
|
for (int k = 0; k < pc.multi; k++)
|
|
{
|
|
if (pc.index[k] >= 24)
|
|
continue;
|
|
|
|
|
|
// double sinTheta = TMath::Sin((hitPos-vector_closest_to_z).Theta());
|
|
// double sinTheta = TMath::Sin((anodeIntersection-TVector3(0,0,90.0)).Theta());
|
|
double sinTheta = TMath::Sin((anodeIntersection - vector_closest_to_z).Theta());
|
|
// double sinTheta = TMath::Sin((hitPos-TVector3(0,0,30.0)).Theta());
|
|
// double sinTheta = TMath::Sin(hitPos.Theta());
|
|
|
|
// if(cathodeHits.size()==2 && PCQQQPhiCut) {
|
|
{
|
|
plotter->Fill2D("CalibratedQQQE_RvsCPCE_TC" + std::to_string(PCQQQTimeCut) + std::to_string(pw_contr.GetZ0() < -150), 400, 0, 10, 400, 0, 30000, eRingMeV, pc.e[k] * sinTheta, "hPCQQQ");
|
|
plotter->Fill2D("CalibratedQQQE_RvsCPCE_Cal_TC" + std::to_string(PCQQQTimeCut) + std::to_string(pw_contr.GetZ0() < -150), 400, 0, 10, 400, 0, 200, eRingMeV, pc.e[k] * sinTheta / 151.461, "hPCQQQ"); // division by 151.5 for rough conversion of PC energy to keV from the slope on teh Source data
|
|
plotter->Fill2D("CalibratedQQQE_WvsCPCE_TC" + std::to_string(PCQQQTimeCut), 400, 0, 10, 400, 0, 30000, eWedgeMeV, pc.e[k] * sinTheta, "hPCQQQ");
|
|
plotter->Fill2D("CalibratedQQQE_RvsPCE_TC" + std::to_string(PCQQQTimeCut) + std::to_string(pw_contr.GetZ0() < -150), 400, 0, 10, 400, 0, 30000, eRingMeV, pc.e[k], "hPCQQQ");
|
|
plotter->Fill2D("CalibratedQQQE_RvsPCE_Cal_TC" + std::to_string(PCQQQTimeCut) + std::to_string(pw_contr.GetZ0() < -150), 400, 0, 10, 400, 0, 200, eRingMeV, pc.e[k] / 151.461, "hPCQQQ"); // division by 151.5 for rough conversion of PC energy to keV from the slope on teh Source data
|
|
plotter->Fill2D("CalibratedQQQE_WvsPCE_TC" + std::to_string(PCQQQTimeCut), 400, 0, 10, 400, 0, 30000, eWedgeMeV, pc.e[k], "hPCQQQ");
|
|
plotter->Fill2D("PCQQQ_dTimevsdPhi", 200, -2000, 2000, 80, -200, 200, tRing - static_cast<double>(pc.t[k]), (hitPos.Phi() - anodeIntersection.Phi()) * 180. / TMath::Pi(), "hTiming");
|
|
}
|
|
}
|
|
} /// qqq i==j case end
|
|
} // j loop end
|
|
} // qqq i loop end
|
|
|
|
TVector3 guessVertex(0, 0, 90.); // for run12, subtract anodeIntersection.Z() by ~74.0 seems to work
|
|
// rho=40.0 mm is halfway between the cathodes(rho=42) and anodes(rho=37)
|
|
double pcz_guess = 42.0 / TMath::Tan((hitPos - guessVertex).Theta()) + guessVertex.Z(); // this is ideally kept to be all QQQ+userinput for calibration of pcz
|
|
if (PCQQQTimeCut && PCQQQPhiCut && hitPos.Perp() > 0 && anodeIntersection.Perp() > 0 && cathodeHits.size() >= 2)
|
|
{
|
|
plotter->Fill2D("pczguess_vs_qqqE", 100, 0, 200, 800, 0, 20, pcz_guess, qqqenergy, "pczguess");
|
|
// double pczoffset = 30.0;
|
|
// plotter->Fill2D("pczguess_vs_pcz_rad="+std::to_string(hitPos.Perp()),100,0,200,150,0,200,pcz_guess,anodeIntersection.Z(),"pczguess"); //entirely qqq-derived position vs entirely PC derived position
|
|
plotter->Fill2D("pczguess_vs_pcz_phi=" + std::to_string(hitPos.Phi() * 180. / M_PI), 100, 0, 200, 150, 0, 200, pcz_guess, anodeIntersection.Z() , "pczguess"); // entirely qqq-derived position vs entirely PC derived position
|
|
plotter->Fill2D("pczguess_vs_pcz", 300, 0, 200, 150, 0, 200, pcz_guess, anodeIntersection.Z() ,"pczguess"); //entirely qqq-derived position vs entirely PC derived position
|
|
plotter->Fill2D("pcz_vs_pcPhi_rad=" + std::to_string(hitPos.Perp()), 360, 0, 360, 150, 0, 200, anodeIntersection.Phi() * 180. / M_PI, anodeIntersection.Z() , "pczguess");
|
|
}
|
|
for (int i = 0; i < sx3.multi; i++)
|
|
{
|
|
// plotting sx3 strip hits vs anode phi
|
|
if (sx3.ch[i] < 8 && anodeIntersection.Perp() > 0)
|
|
plotter->Fill2D("PCPhi_vs_SX3Strip", 100, -200, 200, 8 * 24, 0, 8 * 24, anodeIntersection.Phi() * 180. / TMath::Pi(), sx3.id[i] * 8 + sx3.ch[i]);
|
|
}
|
|
|
|
if (anodeIntersection.Z() != 0 && cathodeHits.size() == 3)
|
|
{
|
|
plotter->Fill1D("PC_Z_proj_3C", 600, -300, 300, anodeIntersection.Z(), "hPCzQQQ");
|
|
}
|
|
|
|
plotter->Fill2D("AnodeMaxE_Vs_Cathode_Sum_Energy", 2000, 0, 30000, 2000, 0, 30000, aEMax, cESum, "hGMPC");
|
|
plotter->Fill1D("Correlated_Cathode_MaxAnode", 6, 0, 5, corrcatMax.size(), "hGMPC");
|
|
plotter->Fill2D("Correlated_Cathode_VS_MaxAnodeEnergy", 6, 0, 5, 2000, 0, 30000, corrcatMax.size(), aEMax, "hGMPC");
|
|
plotter->Fill1D("AnodeHits", 12, 0, 11, anodeHits.size(), "hGMPC");
|
|
plotter->Fill2D("AnodeMaxE_vs_AnodeHits", 12, 0, 11, 2000, 0, 30000, anodeHits.size(), aEMax, "hGMPC");
|
|
|
|
if (anodeHits.size() < 1)
|
|
{
|
|
plotter->Fill1D("NoAnodeHits_CathodeHits", 6, 0, 5, cathodeHits.size(), "hGMPC");
|
|
}
|
|
|
|
return kTRUE;
|
|
}
|
|
|
|
void MakeVertex::Terminate()
|
|
{
|
|
plotter->FlushToDisk();
|
|
}
|