ANASEN_analysis/ClassAnasen.h
2024-01-31 19:54:25 -05:00

522 lines
17 KiB
C++

#ifndef ClassAnasen_h
#define ClassAnasen_h
#include <cstdio>
#include <TMath.h>
#include <TVector3.h>
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoBBox.h"
#include "TCanvas.h"
#include "TPolyMarker3D.h"
#include "TPolyLine3D.h"
struct SX3{
short id = -1; // -1 when no hit
short chUp;
short chDown;
short chBack;
double zFrac; // from +1 (downstream) to -1 (upstream)
double eUp;
double eDown;
double eBack;
TVector3 hitPos;
void CalZFrac(){
zFrac = (eUp - eDown)/(eUp + eDown);
}
void Print(){
if( id == -1 ){
printf("Did not hit any SX3.\n");
}else{
printf("ID: %d, U,D,B: %d %d %d| zFrac : %.2f\n", id, chUp, chDown, chBack, zFrac);
printf("Hit Pos: %.2f, %.2f, %.2f\n", hitPos.X(), hitPos.Y(), hitPos.Z());
}
}
};
class ANASEN{
public:
ANASEN();
~ANASEN();
void CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose = false);
TVector3 CalSX3Pos(unsigned short ID, unsigned short chUp, unsigned short chDown, unsigned short chBack, float eUp = 0, float eDown = 0 );
TVector3 GetTrackPos() const {return trackPos;}
TVector3 GetTrackVec() const {return trackVec;}
double GetTrackTheta() const {return trackVec.Theta();}
double GetTrackPhi() const {return trackVec.Phi();}
void DrawAnasen(int anodeID1 = -1, int anodeID2 = -1, int cathodeID1 = -1, int cathodeID2 = -1, bool DrawQQQ = false );
void DrawDeducedTrack(TVector3 sx3Pos, int anodeID, int cathodeID);
//Simulation
SX3 FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose = false);
std::pair<int, int> FindWireID(TVector3 pos, TVector3 direction, bool verbose = false);
void DrawTrack(TVector3 pos, TVector3 direction);
std::pair<TVector3,TVector3> GetAnode(unsigned short id) const{return P1[id];};
std::pair<TVector3,TVector3> GetCathode(unsigned short id) const{return Q1[id];};
private:
const int nWire = 24;
const int wireShift = 3;
const int zLen = 380; //mm
const int radiusA = 37;
const int radiusC = 43;
std::vector<std::pair<TVector3,TVector3>> P1; // the anode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> Q1; // the cathode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> S1; // coners of the SX3 0-11, z = mid point
std::vector<std::pair<TVector3,TVector3>> S2; // coners of the SX3 12-23, z = mid point
void CalGeometry();
TVector3 trackPos;
TVector3 trackVec;
double trackPosErrorZ; // mm
TVector3 tracePosErrorXY; // the mag is the size of the error
TVector3 trackVecErrorA; // error vector prependicular to the Anode-Pos plan
TVector3 trackVecErrorC; // error vector prependicular to the Cathode-Pos plan
const int nSX3 = 12;
const int sx3Radius = 88;
const int sx3Width = 40;
const int sx3Length = 75;
const int sx3Gap = 46;
const int qqqR1 = 50;
const int qqqR2 = 100;
const int qqqZPos = sx3Gap/2 + sx3Length + 30;
// int geomID;
TGeoManager *geom;
TGeoVolume *worldBox;
void Construct3DModel(int anodeID1 = -1, int anodeID2 = -1, int cathodeID1 = -1, int cathodeID2 = -1, bool DrawQQQ = true);
double Distance(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2);
std::pair<double, double> Intersect(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2);
};
//!==============================================
inline ANASEN::ANASEN(){
CalGeometry();
// geomID = 0;
geom = nullptr;
worldBox = nullptr;
}
inline ANASEN::~ANASEN(){
delete geom;
}
//!==============================================
inline void ANASEN::CalGeometry(){
std::pair<TVector3, TVector3> p1; // anode
std::pair<TVector3, TVector3> q1; // cathode
for(int i = 0; i < nWire; i++ ){
// Anode rotate right-hand
p1.first.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * i ),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * i ),
zLen/2);
p1.second.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * (i + wireShift)),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * (i + wireShift)),
-zLen/2);
P1.push_back(p1);
// P1.back().first.Print();
// P1.back().second.Print();
// Cathod rotate left-hand
q1.first.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() * i / nWire ),
radiusC * TMath::Sin( TMath::TwoPi() * i / nWire ),
zLen/2);
q1.second.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() * (i - wireShift) / nWire ),
radiusC * TMath::Sin( TMath::TwoPi() * (i - wireShift) / nWire ),
-zLen/2);
Q1.push_back(q1);
// Q1.back().first.Print();
// Q1.back().second.Print();
}
TVector3 sa, sb;
for(int i = 0; i < nSX3; i++){
sa.SetXYZ( sx3Radius, sx3Width/2, sx3Gap/2 + sx3Length/2 );
sb.SetXYZ( sx3Radius, -sx3Width/2, sx3Gap/2 + sx3Length/2 );
sa.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
sb.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
S1.push_back(std::pair(sa,sb));
sa.SetXYZ( sx3Radius, sx3Width/2, -sx3Gap/2 - sx3Length/2 );
sb.SetXYZ( sx3Radius, -sx3Width/2, -sx3Gap/2 - sx3Length/2 );
sa.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
sb.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
S2.push_back(std::pair(sa,sb));
}
}
inline void ANASEN::Construct3DModel(int anodeID1, int anodeID2, int cathodeID1, int cathodeID2, bool DrawQQQ ){
if( geom ) delete geom;
// Create ROOT manager and master volume
geom = new TGeoManager("Detector", "ANASEN");
//--- define some materials
TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0);
TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7);
//--- define some media
TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum);
TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl);
//--- make the top container volume
Double_t worldx = 200.; //mm
Double_t worldy = 200.; //mm
Double_t worldz = 200.; //mm
worldBox = geom->MakeBox("ROOT", Vacuum, worldx, worldy, worldz);
geom->SetTopVolume(worldBox);
//--- making axis
TGeoVolume *axisX = geom->MakeTube("axisX", Al, 0, 0.1, 5.);
axisX->SetLineColor(1);
worldBox->AddNode(axisX, 1, new TGeoCombiTrans(5, 0, 0., new TGeoRotation("rotA", 90., 90., 0.)));
TGeoVolume *axisY = geom->MakeTube("axisY", Al, 0, 0.1, 5.);
axisY->SetLineColor(1);
worldBox->AddNode(axisY, 1, new TGeoCombiTrans(0, 5, 0., new TGeoRotation("rotB", 0., 90., 0.)));
TGeoVolume *axisZ = geom->MakeTube("axisZ", Al, 0, 0.1, 5.);
axisZ->SetLineColor(1);
worldBox->AddNode(axisZ, 1, new TGeoTranslation(0, 0, 5));
//.......... convert to wire center dimensions
double dAngle = wireShift * TMath::TwoPi() / nWire;
double radiusAnew = radiusA * TMath::Cos( dAngle / 2.);
double wireALength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusA * TMath::Sin(dAngle/2),2) );
double wireATheta = TMath::ATan2( 2* radiusA * TMath::Sin( dAngle / 2.), zLen);
// printf(" dAngle : %f\n", dAngle);
// printf(" newRadius : %f\n", radiusAnew);
// printf("wireLength : %f\n", wireALength);
// printf("wire Theta : %f\n", wireATheta);
TGeoVolume *pcA = geom->MakeTube("tub1", Al, 0, 0.01, wireALength/2);
pcA->SetLineColor(4);
int startID = 0;
int endID = nWire - 1;
if( anodeID1 >= 0 && anodeID2 >= 0 ){
startID = anodeID1;
endID = anodeID2;
if( anodeID1 > anodeID2 ) {
endID = nWire + anodeID2;
}
}
for( int i = startID; i <= endID; i++){
worldBox->AddNode(pcA, i+1, new TGeoCombiTrans( radiusAnew * TMath::Cos( TMath::TwoPi() / nWire *i + dAngle / 2),
radiusAnew * TMath::Sin( TMath::TwoPi() / nWire *i + dAngle / 2),
0,
new TGeoRotation("rot1", 360/ nWire * (i + wireShift/2.), wireATheta * 180/ TMath::Pi(), 0.)));
}
double radiusCnew = radiusC * TMath::Cos( dAngle / 2.);
double wireCLength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusC * TMath::Sin(dAngle/2),2) );
double wireCTheta = TMath::ATan2( 2* radiusC * TMath::Sin( dAngle / 2.), zLen);
TGeoVolume *pcC = geom->MakeTube("tub2", Al, 0, 0.01, wireCLength/2);
pcC->SetLineColor(6);
startID = 0;
endID = nWire - 1;
if( cathodeID1 >= 0 && cathodeID2 >= 0 ){
startID = cathodeID1;
endID = cathodeID2;
if( cathodeID1 > cathodeID2 ) {
endID = nWire + cathodeID2;
}
}
for( int i = startID; i <= endID; i++){
worldBox->AddNode(pcC, i+1, new TGeoCombiTrans( radiusCnew * TMath::Cos( TMath::TwoPi() / nWire *i - dAngle/2),
radiusCnew * TMath::Sin( TMath::TwoPi() / nWire *i - dAngle/2),
0,
new TGeoRotation("rot1", 360/ nWire * (i - wireShift/2.), -wireCTheta * 180/ TMath::Pi(), 0.)));
}
TGeoVolume * sx3 = geom->MakeBox("box", Al, 0.1, sx3Width/2, sx3Length/2);
sx3->SetLineColor(kGreen+3);
for( int i = 0; i < nSX3; i++){
worldBox->AddNode(sx3, 2*i+1., new TGeoCombiTrans( sx3Radius * TMath::Cos( TMath::TwoPi() / nSX3 * (i + 0.5)),
sx3Radius * TMath::Sin( TMath::TwoPi() / nSX3 * (i + 0.5)),
sx3Length/2+sx3Gap/2,
new TGeoRotation("rot1", 360/nSX3 * (i + 0.5), 0., 0.)));
worldBox->AddNode(sx3, 2*i+2., new TGeoCombiTrans( sx3Radius * TMath::Cos( TMath::TwoPi() / nSX3 * (i + 0.5)),
sx3Radius * TMath::Sin( TMath::TwoPi() / nSX3 * (i + 0.5)),
-sx3Length/2-sx3Gap/2,
new TGeoRotation("rot1", 360/nSX3 * (i + 0.5), 0., 0.)));
}
if( DrawQQQ ){
TGeoVolume *qqq = geom->MakeTubs("qqq", Al, qqqR1, qqqR2, 0.5, 5, 85);
qqq->SetLineColor(7);
for( int i = 0; i < 4; i++){
worldBox->AddNode(qqq, i+1, new TGeoCombiTrans( 0,
0,
qqqZPos,
new TGeoRotation("rot1", 360/4 * (i), 0., 0.)));
}
}
}
//!============================================== Aux Functions
inline double ANASEN::Distance(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2){
TVector3 na = a1 - a2;
TVector3 nb = b1 - b2;
TVector3 nd = (na.Cross(nb)).Unit();
return TMath::Abs(nd.Dot(a1-b2));
}
inline std::pair<double, double> ANASEN::Intersect(TVector3 p1, TVector3 p2, TVector3 q1, TVector3 q2){
//see https://nukephysik101.wordpress.com/2023/12/30/intersect-between-2-line-segments/
//zero all z-component
TVector3 a0 = p1; a0.SetZ(0);
TVector3 a1 = p2; a1.SetZ(0);
TVector3 b0 = q1; b0.SetZ(0);
TVector3 b1 = q2; b1.SetZ(0);
double A = ((b0-b1).Cross(a0-a1)).Mag();
double h = ((b0-a0).Cross(b1-a0)).Mag()/ A;
double k = ((a1-b0).Cross(a0-b0)).Mag()/ A;
return std::pair(h,k);
}
//!============================================== Given a position and a direction, find wireID and SX3 position
inline std::pair<int, int> ANASEN::FindWireID(TVector3 pos, TVector3 direction, bool verbose ){
int anodeID = -1;
int cathodeID = -1;
double minAnodeDis = 999999;
double minCathodeDis = 999999;
double phi = direction.Phi();
for( int i = 0; i < nWire; i++){
double disA = 99999999;
double disC = 99999999;
if(P1[i].first.Phi()-TMath::PiOver4() < phi && phi < P1[i].second.Phi()+TMath::PiOver4()) {
disA = Distance( pos, pos + direction, P1[i].first, P1[i].second);
if( disA < minAnodeDis ){
minAnodeDis = disA;
anodeID = i;
}
}
if(Q1[i].second.Phi() < phi && phi < Q1[i].first.Phi()) {
disC = Distance( pos, pos + direction, Q1[i].first, Q1[i].second);
if( disC < minCathodeDis ){
minCathodeDis = disC;
cathodeID = i;
}
}
if(verbose) printf(" %2d | %8.2f, %8.2f\n", i, disA, disC);
}
if( verbose ) printf("AnodeID %d (%.2f), Cathode %d (%.2f) \n", anodeID, minAnodeDis, cathodeID, minCathodeDis);
return std::pair(anodeID, cathodeID);
}
inline SX3 ANASEN::FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose){
SX3 haha;
haha.id = -1;
for( int i = 0 ; i < nSX3; i++){
std::pair<double, double> frac = Intersect( pos, pos + direction, S1[i].first, S1[i].second);
if( frac.second < 0 || frac.second > 1 ) continue;
haha.hitPos = pos + frac.first * direction;
haha.chDown = 2 * TMath::Floor(frac.second * 4);
haha.chUp = haha.chDown + 1;
double zPos = haha.hitPos.Z();
if( (sx3Gap/2 < zPos && zPos < sx3Gap/2 + sx3Length ) || (-sx3Gap/2 - sx3Length < zPos && zPos < -sx3Gap/2 ) ){
haha.id = zPos > 0 ? i : i + 12;
haha.zFrac = zPos > 0 ? (zPos - sx3Gap/2 - sx3Length/2)/sx3Length : (zPos - ( - sx3Gap/2 - sx3Length/2) )/sx3Length ;
haha.chBack = TMath::Floor( haha.zFrac * 4 ) + 8;
if( verbose) haha.Print();
return haha;
}
}
if( verbose) haha.Print();
return haha;
}
//!============================================== Drawing functions
inline void ANASEN::DrawAnasen(int anodeID1, int anodeID2, int cathodeID1, int cathodeID2, bool DrawQQQ ){
Construct3DModel(anodeID1, anodeID2, cathodeID1, cathodeID2, DrawQQQ);
geom->CloseGeometry();
geom->SetVisLevel(4);
worldBox->Draw("ogle");
}
inline void ANASEN::DrawTrack(TVector3 pos, TVector3 direction){
std::pair<int, int> id = FindWireID(pos, direction);
SX3 sx3 = FindSX3Pos(pos, direction);
int a1 = id.first - 1; if( a1 < 0 ) a1 += nWire;
int b1 = id.second - 1; if( b1 < 0 ) b1 += nWire;
Construct3DModel(a1, id.first+1, b1, id.second+1, false);
double theta = direction.Theta() * TMath::RadToDeg();
double phi = direction.Phi() * TMath::RadToDeg();
// printf("Theta, Phi = %.2f %.2f \n", theta, phi);
// pos.Print();
TGeoVolume * Track = geom->MakeTube("track", 0, 0, 0.1, 100.);
Track->SetLineColor(kRed);
worldBox->AddNode(Track, 1, new TGeoCombiTrans( pos.X(), pos.Y(), pos.Z(), new TGeoRotation("rotA", phi + 90, theta, 0.)));
TGeoVolume * startPos = geom->MakeSphere("startPos", 0, 0, 3);
startPos->SetLineColor(kBlack);
worldBox->AddNode(startPos, 3, new TGeoCombiTrans( pos.X(), pos.Y(), pos.Z(), new TGeoRotation("rotA", 0, 0, 0.)));
TGeoVolume * hit = geom->MakeSphere("hitpos", 0, 0, 3);
hit->SetLineColor(kRed);
worldBox->AddNode(hit, 2, new TGeoCombiTrans( sx3.hitPos.X(), sx3.hitPos.Y(), sx3.hitPos.Z(), new TGeoRotation("rotA", 0, 0, 0.)));
geom->CloseGeometry();
geom->SetVisLevel(4);
worldBox->Draw("ogle");
}
inline void ANASEN::DrawDeducedTrack(TVector3 sx3Pos, int anodeID, int cathodeID){
CalTrack(sx3Pos, anodeID, cathodeID);
Construct3DModel(anodeID, anodeID, cathodeID, cathodeID, false);
double theta = trackVec.Theta() * TMath::RadToDeg();
double phi = trackVec.Phi() * TMath::RadToDeg();
TGeoVolume * Track = geom->MakeTube("axisX", 0, 0, 0.1, 100.);
Track->SetLineColor(kRed);
worldBox->AddNode(Track, 1, new TGeoCombiTrans( sx3Pos.X(), sx3Pos.Y(), sx3Pos.Z(), new TGeoRotation("rotA", phi + 90, theta, 0.)));
TGeoVolume * hit = geom->MakeSphere("hitpos", 0, 0, 3);
hit->SetLineColor(kRed);
worldBox->AddNode(hit, 2, new TGeoCombiTrans( sx3Pos.X(), sx3Pos.Y(), sx3Pos.Z(), new TGeoRotation("rotA", 0, 0, 0.)));
geom->CloseGeometry();
geom->SetVisLevel(4);
worldBox->Draw("ogle");
}
//!============================================== Duduce trace from experiment
inline void ANASEN::CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose){
trackPos = sx3Pos;
TVector3 n1 = (P1[anodeID].first - P1[anodeID].second).Cross((sx3Pos - P1[anodeID].second)).Unit();
TVector3 n2 = (Q1[cathodeID].first - Q1[cathodeID].second).Cross((sx3Pos - Q1[cathodeID].second)).Unit();
// if the handiness of anode and cathode revered, it should be n2 cross n1
trackVec = (n2.Cross(n1)).Unit();
if( verbose ) printf("Theta, Phi = %f, %f \n", trackVec.Theta() *TMath::RadToDeg(), trackVec.Phi()*TMath::RadToDeg());
}
inline TVector3 ANASEN::CalSX3Pos(unsigned short ID, unsigned short chUp, unsigned short chDown, unsigned short chBack, float eUp, float eDown){
TVector3 haha;
if( (chUp - chDown) != 1 || (chDown % 2) != 0) return haha;
int reducedID = ID % nSX3;
TVector3 sa, sb;
if( ID < nSX3 ){ //down
sa = S1[reducedID].first;
sb = S1[reducedID].second;
}else{
sa = S2[reducedID].first;
sb = S2[reducedID].second;
}
haha.SetX( (sb.X() - sa.X()) * chUp/8 + sa.X());
haha.SetY( (sb.Y() - sa.Y()) * chUp/8 + sa.Y());
if( eUp == 0 || eDown == 0 ){
haha.SetZ( sa.Z() + (2*(chBack - 7)-1) * sx3Length / 8 );
}else{
double frac = (eUp - eDown)/(eUp + eDown); // from +1 (downstream) to -1 (upstream)
double zPos = sa.Z() + sx3Length * frac/2;
haha.SetZ( zPos );
}
return haha;
}
#endif