ANASEN_analysis/GainMatchSX3Front.C
Vignesh Sitaraman b44ffd7fdf modified: .vscode/c_cpp_properties.json made changes to include the laptop
modified:   GainMatchSX3.C included flags to allow interactive mode and verbose fit
	modified:   GainMatchSX3Front.C included flags to allow interactive mode and verbose fit
2025-07-31 12:07:07 -04:00

405 lines
13 KiB
C

#define GainMatchSX3Front_cxx
#include "GainMatchSX3Front.h"
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include <TProfile.h>
#include "Armory/ClassSX3.h"
#include "TGraphErrors.h"
#include "TMultiDimFit.h"
#include "TVector3.h"
TH2F *hSX3FvsB;
TH2F *hSX3FvsB_g;
TH2F *hsx3IndexVE;
TH2F *hsx3IndexVE_g;
TH2F *hSX3;
TH2F *hsx3Coin;
int padID = 0;
SX3 sx3_contr;
TCutG *cut;
TCutG *cut1;
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
// Gain arrays
const int MAX_DET = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
double backGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool backGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
// ==== Configuration Flags ====
const bool interactiveMode = false; // If true: show canvas + wait for user
const bool verboseFit = true; // If true: print fit summary and chi²
const bool drawCanvases = true; // If false: canvases won't be drawn at all
void GainMatchSX3Front::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
sx3_contr.ConstructGeo();
// Load the TCutG object
TFile *cutFile = TFile::Open("sx3cut.root");
bool cutLoaded = (cut != nullptr);
cut = dynamic_cast<TCutG *>(cutFile->Get("sx3cut"));
if (!cut)
{
std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl;
return;
}
cut->SetName("sx3cut"); // Ensure the cut has the correct name
// Load the TCutG object
TFile *cutFile1 = TFile::Open("UvD.root");
bool cut1Loaded = (cut1 != nullptr);
cut1 = dynamic_cast<TCutG *>(cutFile1->Get("UvD"));
if (!cut1)
{
std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl;
return;
}
cut1->SetName("UvD");
std::string filename = "sx3_GainMatchback.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
return;
}
int id, bk, u, d;
double gain;
while (infile >> id >> bk >> u >> d >> gain)
{
backGain[id][bk][u][d] = gain;
if (backGain[id][bk][u][d] > 0)
backGainValid[id][bk][u][d] = true;
else
backGainValid[id][bk][u][d] = false;
}
infile.close();
std::cout << "Loaded back gains from " << filename << std::endl;
SX3 sx3_contr;
}
Bool_t GainMatchSX3Front::Process(Long64_t entry)
{
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
sx3.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
for (int j = i + 1; j < sx3.multi; j++)
{
// if (sx3.id[i] == 3)
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
if (sx3.e[i] > 100)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
}
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
// start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{ // Check if id of i belongs to the same detector and then add it to the detector ID vector
if (ID[i].first == sx3ID.back().first)
{ // count the nunmber of hits that belong to the same detector
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{ // the next event does not belong to the same detector, abandon the first event and continue with the next one
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
for (size_t i = 0; i < sx3ID.size(); i++)
{
int index = sx3ID[i].second;
// Check the channel number and assign it to the appropriate channel type
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
sx3ChDn = sx3.ch[index] / 2;
sx3EDn = sx3.e[index];
}
else
{
sx3ChUp = sx3.ch[index] / 2;
sx3EUp = sx3.e[index];
}
}
else
{
sx3ChBk = sx3.ch[index] - 8;
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[index], sx3ChBk);
sx3EBk = sx3.e[index];
}
}
// If we have a valid front and back channel, fill the histograms
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
// Fill the histogram for the front vs back
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
for (int i = 0; i < sx3.multi; i++)
{
if (sx3.e[i] > 100) // && sx3.id[i] == 4)
{
// back gain correction
// Fill the histogram for the front vs back with gain correction
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// Fill the index vs energy histogram
hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// }
// {
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
if (!hist2d)
{
hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000);
}
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[i], sx3ChBk);
// hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk) && cut1 && cut1->IsInside(sx3EUp / sx3EBk, sx3EDn / sx3EBk))
{
if (backGainValid[sx3.id[i]][sx3ChBk][sx3ChUp][sx3ChDn])
{
sx3EBk *= backGain[sx3.id[i]][sx3ChBk][sx3ChUp][sx3ChDn];
}
// Accumulate data for gain matching
dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
}
}
}
}
return kTRUE;
}
void GainMatchSX3Front::Terminate()
{
std::map<std::tuple<int, int, int, int>, TVectorD> fitCoefficients;
// === Gain matching ===
std::ofstream outFile("sx3_GainMatchfront.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening output file!" << std::endl;
return;
}
TH2F *hUvD = new TH2F("hUvD", " UvD; Up/CorrBack; Down/CorrBack", 600, 0, 1, 600, 0, 1);
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
const auto &pts = kv.second;
if (pts.size() < 5)
continue;
std::vector<double> uE, dE, udE, corrBkE;
for (const auto &pr : pts)
{
double eBkCorr, eUp, eDn;
std::tie(eBkCorr, eUp, eDn) = pr;
if ((eBkCorr < 100) || (eUp < 100) || (eDn < 100))
continue; // Skip if any energy is zero
uE.push_back(eUp / eBkCorr);
dE.push_back(eDn / eBkCorr);
udE.push_back(eUp + eDn);
corrBkE.push_back(eBkCorr);
hUvD->Fill(eUp / eBkCorr, eDn / eBkCorr);
}
if (uE.size() < 5 || dE.size() < 5 || corrBkE.size() < 5)
continue; // Ensure we have enough points for fitting
// TGraph g(udE.size(), udE.data(), corrBkE.data());
// TF1 f("f", "[0]*x", 0, 20000);
// f.SetParameter(0, 1.0); // Initial guess for the gain
// g.Fit(&f, "R");
const double fixedError = 20.0; // in ADC channels
std::vector<double> xVals, yVals, exVals, eyVals;
// Build data with fixed error
for (size_t i = 0; i < udE.size(); ++i)
{
double x = udE[i]; // front energy
double y = corrBkE[i]; // back energy
xVals.push_back(x);
yVals.push_back(y);
// exVals.push_back(fixedError); // error in front energy
eyVals.push_back(fixedError); // error in back energy
}
// Build TGraphErrors with errors
TGraphErrors g(xVals.size(), xVals.data(), yVals.data(), exVals.data(), eyVals.data());
TF1 f("f", "[0]*x", 0, 16000);
f.SetParameter(0, 1.0); // Initial guess
if (drawCanvases)
{
TCanvas *c = new TCanvas(Form("c_%d_%d_%d_%d", id, bk, u, d), "Fit", 800, 600);
g.SetTitle(Form("Detector %d: U%d D%d B%d", id, u, d, bk));
g.SetMarkerStyle(20);
g.SetMarkerColor(kBlue);
g.Draw("AP");
g.Fit(&f, interactiveMode ? "Q" : "QNR"); // 'R' avoids refit, 'N' skips drawing
if (verboseFit)
{
double chi2 = f.GetChisquare();
int ndf = f.GetNDF();
double reducedChi2 = (ndf != 0) ? chi2 / ndf : -1;
std::cout << Form("Det%d U%d D%d B%d → Gain: %.4f | χ²/ndf = %.2f/%d = %.2f",
id, u, d, bk, f.GetParameter(0), chi2, ndf, reducedChi2)
<< std::endl;
}
if (interactiveMode)
{
c->Update();
gPad->WaitPrimitive();
}
else
{
c->Close(); // Optionally avoid clutter in batch
}
}
else
{
g.Fit(&f, "QNR");
}
frontGain[id][bk][u][d] = f.GetParameter(0);
frontGainValid[id][bk][u][d] = true;
outFile << id << " " << bk << " " << u << " " << d << " " << frontGain[id][bk][u][d] << std::endl;
printf("Front gain Det%d Back%d Up%dDn%d → %.4f\n", id, bk, u, d, frontGain[id][bk][u][d]);
}
outFile.close();
std::cout << "Gain matching complete." << std::endl;
// === Stage 3: Create corrected histogram ===
TH2F *hCorrectedFvB = new TH2F("hCorrectedFvB", "Corrected;Corrected Front Sum;Corrected Back", 800, 0, 8000, 800, 0, 8000);
TH2F *hCorrectedUvD = new TH2F("hCorrectedUvD", "Corrected UvD; UvD Up; UvD Down", 600, 0, 1, 600, 0, 1);
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
double front = frontGain[id][bk][u][d];
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
double corrUp = eUp * front;
// double corrDn = eDn * front;
hCorrectedFvB->Fill(corrUp + eDn, eBk);
hCorrectedUvD->Fill(corrUp / eBk, eDn / eBk);
}
}
// // === Final canvas ===
// gStyle->SetOptStat(1110);
// TCanvas *c1 = new TCanvas("c1", "Gain Correction Results", 1200, 600);
// c1->Divide(2, 1);
// c1->cd(1);
// hSX3FvsB_g->SetTitle("Before Correction (Gated)");
// hSX3FvsB_g->GetXaxis()->SetTitle("Measured Front Sum (E_Up + E_Dn)");
// hSX3FvsB_g->GetYaxis()->SetTitle("Measured Back E");
// hSX3FvsB_g->Draw("colz");
// c1->cd(2);
// hCorrectedFvB->SetTitle("After Correction");
// hCorrectedFvB->Draw("colz");
// TF1 *diag = new TF1("diag", "x", 0, 40000);
// diag->SetLineColor(kRed);
// diag->SetLineWidth(2);
// diag->Draw("same");
std::cout << "Terminate() completed successfully." << std::endl;
}