modified: Calibration.C modified: GainMatchQQQ.C new file: QQQ_Calcheck.C new file: QQQ_Calcheck.h new file: makeplots.C
360 lines
12 KiB
C
360 lines
12 KiB
C
#define GainMatchQQQ_cxx
|
|
|
|
#include "GainMatchQQQ.h"
|
|
#include <TH2.h>
|
|
#include <TF1.h>
|
|
#include <TStyle.h>
|
|
#include <TCanvas.h>
|
|
#include <TMath.h>
|
|
#include <TCutG.h>
|
|
#include <fstream>
|
|
#include <utility>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include "Armory/HistPlotter.h"
|
|
#include "TVector3.h"
|
|
|
|
TH2F *hQQQFVB;
|
|
HistPlotter *plotter;
|
|
|
|
int padID = 0;
|
|
|
|
TCutG *cut;
|
|
std::map<std::tuple<int, int, int>, std::vector<std::pair<double, double>>> dataPoints;
|
|
|
|
void GainMatchQQQ::Begin(TTree * /*tree*/)
|
|
{
|
|
plotter = new HistPlotter("GainQQQ.root", "TFILE");
|
|
TString option = GetOption();
|
|
|
|
hQQQFVB = new TH2F("hQQQFVB", "QQQ Front vs Back; Front E; Back E", 800, 0, 16000, 800, 0, 16000);
|
|
|
|
// Load the TCutG object
|
|
TFile *cutFile = TFile::Open("qqqcorr.root");
|
|
if (!cutFile || cutFile->IsZombie())
|
|
{
|
|
std::cerr << "Error: Could not open qqqcorr.root" << std::endl;
|
|
return;
|
|
}
|
|
cut = dynamic_cast<TCutG *>(cutFile->Get("qqqcorr"));
|
|
if (!cut)
|
|
{
|
|
std::cerr << "Error: Could not find TCutG named 'qqqcorr' in qqqcorr.root" << std::endl;
|
|
return;
|
|
}
|
|
cut->SetName("qqqcorr"); // Ensure the cut has the correct name
|
|
}
|
|
|
|
Bool_t GainMatchQQQ::Process(Long64_t entry)
|
|
{
|
|
|
|
int ringMults[16] = {0};
|
|
int wedgeMults[16] = {0};
|
|
std::vector<std::tuple<int, int, int, double, double>> events;
|
|
|
|
b_qqqMulti->GetEntry(entry);
|
|
b_qqqID->GetEntry(entry);
|
|
b_qqqCh->GetEntry(entry);
|
|
b_qqqE->GetEntry(entry);
|
|
b_qqqT->GetEntry(entry);
|
|
|
|
qqq.CalIndex();
|
|
|
|
for (int i = 0; i < qqq.multi; i++)
|
|
{
|
|
for (int j = i + 1; j < qqq.multi; j++)
|
|
{
|
|
if (qqq.id[i] == qqq.id[j])
|
|
{
|
|
int chWedge = -1;
|
|
int chRing = -1;
|
|
float eWedge = 0.0;
|
|
float eRing = 0.0;
|
|
if (qqq.ch[i] < 16 && qqq.ch[j] >= 16)
|
|
{
|
|
chWedge = qqq.ch[i];
|
|
eWedge = qqq.e[i];
|
|
chRing = qqq.ch[j] - 16;
|
|
eRing = qqq.e[j];
|
|
}
|
|
else if (qqq.ch[j] < 16 && qqq.ch[i] >= 16)
|
|
{
|
|
chWedge = qqq.ch[j];
|
|
eWedge = qqq.e[j];
|
|
chRing = qqq.ch[i] - 16;
|
|
eRing = qqq.e[i];
|
|
}
|
|
else
|
|
continue;
|
|
ringMults[chRing]++;
|
|
wedgeMults[chWedge]++;
|
|
hQQQFVB->Fill(eWedge, eRing);
|
|
events.emplace_back(qqq.id[i], chRing, chWedge, eRing, eWedge);
|
|
plotter->Fill2D(Form("hRaw_qqq%d_ring%d_wedge%d", qqq.id[i], chRing, chWedge), 800, 0, 3000, 800, 0, 3000, eWedge, eRing, "hRawQQQ");
|
|
// double ratio = (eWedge > 0.0) ? (eRing / eWedge) : 0.0;
|
|
// double maxslope = 1.5;
|
|
|
|
// bool validPoint = false;
|
|
// if (ratio < maxslope && ratio > 1. / maxslope)
|
|
// {
|
|
// // Accumulate data for gain matching
|
|
// dataPoints[{qqq.id[i], chRing, chWedge}].emplace_back(eWedge, eRing);
|
|
// plotter->Fill2D("hAll_in", 4000, 0, 16000, 4000, 0, 16000, eWedge, eRing);
|
|
// validPoint = true;
|
|
// }
|
|
|
|
// if (!validPoint)
|
|
// {
|
|
// plotter->Fill2D("hAll_out", 4000, 0, 16000, 4000, 0, 16000, eWedge, eRing);
|
|
// }
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto tuple : events)
|
|
{
|
|
auto [id, chr, chw, er, ew] = tuple;
|
|
if (ringMults[chr] > 1 || wedgeMults[chw] > 1)
|
|
continue; // ignore multiplicity > 1 events
|
|
double ratio = (ew > 0.0) ? (er / ew) : 0.0;
|
|
double maxslope = 1.5;
|
|
|
|
bool validPoint = false;
|
|
if (ratio < maxslope && ratio > 1. / maxslope)
|
|
{
|
|
// Accumulate data for gain matching
|
|
dataPoints[{id, chr, chw}].emplace_back(ew, er);
|
|
plotter->Fill2D("hAll_in", 4000, 0, 16000, 4000, 0, 16000, ew, er);
|
|
validPoint = true;
|
|
}
|
|
|
|
if (!validPoint)
|
|
{
|
|
plotter->Fill2D("hAll_out", 4000, 0, 16000, 4000, 0, 16000, ew, er);
|
|
}
|
|
}
|
|
|
|
return kTRUE;
|
|
}
|
|
|
|
void GainMatchQQQ::Terminate()
|
|
{
|
|
const int MAX_DET = 4;
|
|
const int MAX_RING = 16;
|
|
const int MAX_WEDGE = 16;
|
|
|
|
double gainW[MAX_DET][MAX_RING][MAX_WEDGE] = {{{0}}};
|
|
double gainR[MAX_DET][MAX_RING][MAX_WEDGE] = {{{0}}};
|
|
bool gainValid[MAX_DET][MAX_RING][MAX_WEDGE] = {{{false}}};
|
|
|
|
std::ofstream outFile("qqq_GainMatch.txt");
|
|
if (!outFile.is_open())
|
|
{
|
|
std::cerr << "Error opening output file!" << std::endl;
|
|
return;
|
|
}
|
|
|
|
// Parameters for sigma-clipping
|
|
const int MIN_POINTS = 5;
|
|
const int MAX_ITER = 5;
|
|
const double CLIP_SIGMA = 3.0;
|
|
|
|
for (const auto &kv : dataPoints)
|
|
{
|
|
auto key = kv.first;
|
|
auto [id, ring, wedge] = key;
|
|
const auto &pts_in = kv.second;
|
|
if (pts_in.size() < (size_t)MIN_POINTS)
|
|
continue;
|
|
|
|
// Make a working copy of the points for clipping
|
|
std::vector<std::pair<double, double>> pts = pts_in;
|
|
|
|
bool solved = false;
|
|
double final_gW = 0.0;
|
|
double final_gR = 0.0;
|
|
|
|
// Iterative sigma-clipping loop
|
|
for (int iter = 0; iter < MAX_ITER; ++iter)
|
|
{
|
|
// Compute sums
|
|
double sum_w2 = 0.0;
|
|
double sum_wr = 0.0;
|
|
double sum_r2 = 0.0;
|
|
for (const auto &p : pts)
|
|
{
|
|
double w = p.first;
|
|
double r = p.second;
|
|
sum_w2 += w * w;
|
|
sum_wr += w * r;
|
|
sum_r2 += r * r;
|
|
}
|
|
|
|
// Guard against degenerate cases
|
|
if (sum_w2 <= 0.0 || sum_wr <= 0.0)
|
|
{
|
|
// // fallback to single-parameter linear fit (original method)
|
|
// // Use ROOT TGraph fitting as fallback
|
|
// if (pts.size() >= 2)
|
|
// {
|
|
// std::vector<double> wE, rE;
|
|
// wE.reserve(pts.size());
|
|
// rE.reserve(pts.size());
|
|
// for (const auto &pr : pts)
|
|
// {
|
|
// wE.push_back(pr.first);
|
|
// rE.push_back(pr.second);
|
|
// }
|
|
// TGraph g(static_cast<int>(wE.size()), wE.data(), rE.data());
|
|
// TF1 f("f_fallback", "[0]*x", 0, 16000);
|
|
// g.Fit(&f, "QNR");
|
|
// double slope = f.GetParameter(0);
|
|
// if (slope > 0)
|
|
// {
|
|
// // distribute correction symmetrically:
|
|
// double alpha = slope; // r ≈ slope * w => alpha = slope
|
|
// double gW_try = std::sqrt(alpha);
|
|
// double gR_try = 1.0 / gW_try;
|
|
// final_gW = gW_try;
|
|
// final_gR = gR_try;
|
|
// solved = true;
|
|
// }
|
|
// }
|
|
break;
|
|
}
|
|
|
|
// alpha = sum(w*r) / sum(w^2)
|
|
double alpha = sum_wr / sum_w2;
|
|
|
|
if (!(alpha > 0.0) || !std::isfinite(alpha))
|
|
{
|
|
// // degenerate; fallback to TF1 fit as above
|
|
// if (pts.size() >= 2)
|
|
// {
|
|
// std::vector<double> wE, rE;
|
|
// wE.reserve(pts.size());
|
|
// rE.reserve(pts.size());
|
|
// for (const auto &pr : pts)
|
|
// {
|
|
// wE.push_back(pr.first);
|
|
// rE.push_back(pr.second);
|
|
// }
|
|
// TGraph g(static_cast<int>(wE.size()), wE.data(), rE.data());
|
|
// TF1 f("f_fallback2", "[0]*x", 0, 16000);
|
|
// g.Fit(&f, "QNR");
|
|
// double slope = f.GetParameter(0);
|
|
// if (slope > 0)
|
|
// {
|
|
// double gW_try = std::sqrt(slope);
|
|
// double gR_try = 1.0 / gW_try;
|
|
// final_gW = gW_try;
|
|
// final_gR = gR_try;
|
|
// solved = true;
|
|
// }
|
|
// }
|
|
break;
|
|
}
|
|
|
|
// distribute correction between W and R
|
|
double gW = std::sqrt(alpha);
|
|
double gR = 1.0 / gW;
|
|
|
|
// compute residuals and sigma
|
|
std::vector<double> residuals;
|
|
residuals.reserve(pts.size());
|
|
for (const auto &p : pts)
|
|
{
|
|
double w = p.first;
|
|
double r = p.second;
|
|
double res = gW * w - gR * r;
|
|
residuals.push_back(res);
|
|
}
|
|
|
|
// mean and stddev (use population sigma here)
|
|
double mean = 0.0;
|
|
for (double v : residuals)
|
|
mean += v;
|
|
mean /= residuals.size();
|
|
|
|
double var = 0.0;
|
|
for (double v : residuals)
|
|
var += (v - mean) * (v - mean);
|
|
var /= residuals.size();
|
|
double sigma = std::sqrt(var);
|
|
|
|
// If sigma is NaN or zero, accept and break
|
|
if (!std::isfinite(sigma) || sigma == 0.0)
|
|
{
|
|
final_gW = gW;
|
|
final_gR = gR;
|
|
solved = true;
|
|
break;
|
|
}
|
|
|
|
// Clip > CLIP_SIGMA and build new pts
|
|
size_t before = pts.size();
|
|
std::vector<std::pair<double, double>> new_pts;
|
|
new_pts.reserve(pts.size());
|
|
for (size_t k = 0; k < pts.size(); ++k)
|
|
{
|
|
if (std::fabs(residuals[k] - mean) <= CLIP_SIGMA * sigma)
|
|
new_pts.push_back(pts[k]);
|
|
}
|
|
pts.swap(new_pts);
|
|
size_t after = pts.size();
|
|
|
|
// If no points removed or too few remain, accept current solution
|
|
final_gW = gW;
|
|
final_gR = gR;
|
|
solved = true;
|
|
if (before == after || pts.size() < (size_t)MIN_POINTS)
|
|
break;
|
|
// otherwise iterate again with clipped pts
|
|
} // end iter loop
|
|
|
|
if (!solved)
|
|
continue;
|
|
|
|
// sanity checks: avoid ridiculous gains
|
|
if (!(final_gW > 0.0) || !(final_gR > 0.0) || !std::isfinite(final_gW) || !std::isfinite(final_gR))
|
|
continue;
|
|
|
|
// store gains
|
|
gainW[id][ring][wedge] = final_gW;
|
|
gainR[id][ring][wedge] = final_gR;
|
|
gainValid[id][ring][wedge] = true;
|
|
|
|
// write out both gains: id wedge ring gW gR
|
|
outFile << id << " " << wedge << " " << ring << " " << final_gW << " " << final_gR << std::endl;
|
|
printf("Gain match Det%d Ring%d Wedge%d → gW=%.6f gR=%.6f\n", id, ring, wedge, final_gW, final_gR);
|
|
}
|
|
|
|
outFile.close();
|
|
|
|
std::cout << "Gain matching complete." << std::endl;
|
|
|
|
// === Plot all gain-matched QQQ points together with a 2D histogram ===
|
|
|
|
// Fill the combined TH2F with corrected data
|
|
for (auto &kv : dataPoints)
|
|
{
|
|
int id, ring, wedge;
|
|
std::tie(id, ring, wedge) = kv.first;
|
|
if (!gainValid[id][ring][wedge])
|
|
continue;
|
|
auto &pts = kv.second;
|
|
for (auto &pr : pts)
|
|
{
|
|
double corrWedge = pr.first * gainW[id][ring][wedge];
|
|
double corrRing = pr.second * gainR[id][ring][wedge];
|
|
// hAll->Fill(corrWedge, corrRing);
|
|
plotter->Fill2D("hAll", 4000, 0, 16000, 4000, 0, 16000, corrWedge, corrRing);
|
|
plotter->Fill2D(Form("hGMQQQ_id%d_ring%d_wedge%d", id, ring, wedge), 400, 0, 16000, 400, 0, 16000, corrWedge, corrRing, "GainMatched");
|
|
}
|
|
}
|
|
|
|
// Optionally keep previous global histos too
|
|
plotter->FlushToDisk();
|
|
}
|