modified: .vscode/settings.json modified: Analyzer.C modified: Calibration.C modified: GainMatchQQQ.C modified: QQQ_Calcheck.C
309 lines
10 KiB
C
309 lines
10 KiB
C
#define GainMatchQQQ_cxx
|
|
|
|
#include "GainMatchQQQ.h"
|
|
#include <TH2.h>
|
|
#include <TF1.h>
|
|
#include <TStyle.h>
|
|
#include <TCanvas.h>
|
|
#include <TMath.h>
|
|
#include <TCutG.h>
|
|
#include <fstream>
|
|
#include <utility>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include "Armory/HistPlotter.h"
|
|
#include "TVector3.h"
|
|
#include "TGraphErrors.h"
|
|
#include "TF1.h"
|
|
#include <cmath>
|
|
|
|
TH2F *hQQQFVB;
|
|
HistPlotter *plotter;
|
|
|
|
int padID = 0;
|
|
|
|
TCutG *cut;
|
|
std::map<std::tuple<int, int, int>, std::vector<std::pair<double, double>>> dataPoints;
|
|
|
|
void GainMatchQQQ::Begin(TTree * /*tree*/)
|
|
{
|
|
plotter = new HistPlotter("GainQQQ.root", "TFILE");
|
|
TString option = GetOption();
|
|
|
|
hQQQFVB = new TH2F("hQQQFVB", "QQQ Front vs Back; Front E; Back E", 800, 0, 16000, 800, 0, 16000);
|
|
|
|
// Load the TCutG object
|
|
TFile *cutFile = TFile::Open("qqqcorr.root");
|
|
if (!cutFile || cutFile->IsZombie())
|
|
{
|
|
std::cerr << "Error: Could not open qqqcorr.root" << std::endl;
|
|
return;
|
|
}
|
|
cut = dynamic_cast<TCutG *>(cutFile->Get("qqqcorr"));
|
|
if (!cut)
|
|
{
|
|
std::cerr << "Error: Could not find TCutG named 'qqqcorr' in qqqcorr.root" << std::endl;
|
|
return;
|
|
}
|
|
cut->SetName("qqqcorr"); // Ensure the cut has the correct name
|
|
}
|
|
|
|
Bool_t GainMatchQQQ::Process(Long64_t entry)
|
|
{
|
|
|
|
int ringMults[16] = {0};
|
|
int wedgeMults[16] = {0};
|
|
std::vector<std::tuple<int, int, int, double, double>> events;
|
|
|
|
b_qqqMulti->GetEntry(entry);
|
|
b_qqqID->GetEntry(entry);
|
|
b_qqqCh->GetEntry(entry);
|
|
b_qqqE->GetEntry(entry);
|
|
b_qqqT->GetEntry(entry);
|
|
|
|
qqq.CalIndex();
|
|
|
|
for (int i = 0; i < qqq.multi; i++)
|
|
{
|
|
for (int j = i + 1; j < qqq.multi; j++)
|
|
{
|
|
if (qqq.id[i] == qqq.id[j])
|
|
{
|
|
int chWedge = -1;
|
|
int chRing = -1;
|
|
float eWedge = 0.0;
|
|
float eRing = 0.0;
|
|
if (qqq.ch[i] < 16 && qqq.ch[j] >= 16)
|
|
{
|
|
chWedge = qqq.ch[i];
|
|
eWedge = qqq.e[i];
|
|
chRing = qqq.ch[j] - 16;
|
|
eRing = qqq.e[j];
|
|
}
|
|
else if (qqq.ch[j] < 16 && qqq.ch[i] >= 16)
|
|
{
|
|
chWedge = qqq.ch[j];
|
|
eWedge = qqq.e[j];
|
|
chRing = qqq.ch[i] - 16;
|
|
eRing = qqq.e[i];
|
|
}
|
|
else
|
|
continue;
|
|
ringMults[chRing]++;
|
|
wedgeMults[chWedge]++;
|
|
hQQQFVB->Fill(eWedge, eRing);
|
|
events.emplace_back(qqq.id[i], chRing, chWedge, eRing, eWedge);
|
|
plotter->Fill2D(Form("hRaw_qqq%d_ring%d_wedge%d", qqq.id[i], chRing, chWedge), 800, 0, 3000, 800, 0, 3000, eWedge, eRing, "hRawQQQ");
|
|
// double ratio = (eWedge > 0.0) ? (eRing / eWedge) : 0.0;
|
|
// double maxslope = 1.5;
|
|
|
|
// bool validPoint = false;
|
|
// if (ratio < maxslope && ratio > 1. / maxslope)
|
|
// {
|
|
// // Accumulate data for gain matching
|
|
// dataPoints[{qqq.id[i], chRing, chWedge}].emplace_back(eWedge, eRing);
|
|
// plotter->Fill2D("hAll_in", 4000, 0, 16000, 4000, 0, 16000, eWedge, eRing);
|
|
// validPoint = true;
|
|
// }
|
|
|
|
// if (!validPoint)
|
|
// {
|
|
// plotter->Fill2D("hAll_out", 4000, 0, 16000, 4000, 0, 16000, eWedge, eRing);
|
|
// }
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto tuple : events)
|
|
{
|
|
auto [id, chr, chw, er, ew] = tuple;
|
|
if (ringMults[chr] > 1 || wedgeMults[chw] > 1)
|
|
continue; // ignore multiplicity > 1 events
|
|
double ratio = (ew > 0.0) ? (er / ew) : 0.0;
|
|
double maxslope = 1.5;
|
|
|
|
bool validPoint = false;
|
|
if (ratio < maxslope && ratio > 1. / maxslope)
|
|
{
|
|
// Accumulate data for gain matching
|
|
dataPoints[{id, chr, chw}].emplace_back(ew, er);
|
|
plotter->Fill2D("hAll_in", 4000, 0, 16000, 4000, 0, 16000, ew, er);
|
|
validPoint = true;
|
|
}
|
|
if (!validPoint)
|
|
{
|
|
plotter->Fill2D("hAll_out", 4000, 0, 16000, 4000, 0, 16000, ew, er);
|
|
}
|
|
}
|
|
|
|
return kTRUE;
|
|
}
|
|
|
|
|
|
void GainMatchQQQ::Terminate()
|
|
{
|
|
const int MAX_DET = 4;
|
|
const int MAX_RING = 16;
|
|
const int MAX_WEDGE = 16;
|
|
|
|
// We store gains locally just for the "corrected" plot,
|
|
// but the file will output Slopes for the global minimizer.
|
|
double gainW[MAX_DET][MAX_RING][MAX_WEDGE] = {{{0}}};
|
|
double gainR[MAX_DET][MAX_RING][MAX_WEDGE] = {{{0}}};
|
|
bool gainValid[MAX_DET][MAX_RING][MAX_WEDGE] = {{{false}}};
|
|
|
|
// Output file for the Minimizer
|
|
std::ofstream outFile("qqq_GainMatch.txt");
|
|
|
|
// Benchmark/Debug file
|
|
std::ofstream benchFile("benchmark_diff.txt");
|
|
benchFile << "ID Wedge Ring Chi2NDF Slope SlopeErr" << std::endl;
|
|
|
|
if (!outFile.is_open()) { std::cerr << "Error opening output file!" << std::endl; return; }
|
|
|
|
const int MIN_POINTS = 50;
|
|
const int MAX_ITER = 3; // Outlier rejection passes
|
|
const double CLIP_SIGMA = 2.5; // Sigma threshold for outliers
|
|
|
|
for (const auto &kv : dataPoints)
|
|
{
|
|
auto key = kv.first;
|
|
auto [id, ring, wedge] = key;
|
|
const auto &pts = kv.second;
|
|
|
|
if (pts.size() < (size_t)MIN_POINTS) continue;
|
|
|
|
std::vector<std::pair<double, double>> current_pts = pts;
|
|
|
|
double finalSlope = 0.0;
|
|
double finalSlopeErr = 0.0;
|
|
bool converged = false;
|
|
|
|
// --- Iterative Fitting ---
|
|
for (int iter = 0; iter < MAX_ITER; ++iter)
|
|
{
|
|
if (current_pts.size() < (size_t)MIN_POINTS) break;
|
|
|
|
std::vector<double> x, y, ex, ey;
|
|
|
|
for (const auto &p : current_pts)
|
|
{
|
|
x.push_back(p.first); // Wedge E
|
|
y.push_back(p.second); // Ring E
|
|
ex.push_back(std::sqrt(std::abs(p.first))); // Error in X (Poisson)
|
|
ey.push_back(std::sqrt(std::abs(p.second))); // Error in Y (Poisson)
|
|
|
|
// Sanity check to avoid 0 error
|
|
if(ex.back() < 1.0) ex.back() = 1.0;
|
|
if(ey.back() < 1.0) ey.back() = 1.0;
|
|
}
|
|
|
|
// 2. Create Graph
|
|
TGraphErrors *gr = new TGraphErrors(current_pts.size(), x.data(), y.data(), ex.data(), ey.data());
|
|
|
|
// 3. Fit Linear Function through Origin
|
|
TF1 *f1= new TF1("calibFit", "[0]*x", 0, 16000);
|
|
f1->SetParameter(0, 1.0);
|
|
|
|
// "Q"=Quiet, "N"=NoDraw, "S"=ResultPtr
|
|
// We do NOT use "W" (Ignore weights), we want to use the errors we set.
|
|
int fitStatus = gr->Fit(f1, "QNS");
|
|
|
|
if (fitStatus != 0) {
|
|
delete gr; delete f1;
|
|
break;
|
|
}
|
|
|
|
finalSlope = f1->GetParameter(0);
|
|
double chi2 = f1->GetChisquare();
|
|
double ndf = f1->GetNDF();
|
|
|
|
// Get the statistical error on the slope
|
|
double rawErr = f1->GetParError(0);
|
|
|
|
// SCALING ERROR:
|
|
// If Chi2/NDF > 1, the data scatters more than Poisson stats predict.
|
|
// // We inflate the error by sqrt(Chi2/NDF) to be conservative for the Minimizer.
|
|
// double redChi2 = (ndf > 0) ? (chi2 / ndf) : 1.0;
|
|
// double inflation = (redChi2 > 1.0) ? std::sqrt(redChi2) : 1.0;
|
|
|
|
// finalSlopeErr = rawErr * inflation;
|
|
|
|
// 4. Outlier Rejection
|
|
if (iter == MAX_ITER - 1) {
|
|
converged = true;
|
|
delete gr; delete f1;
|
|
break;
|
|
}
|
|
|
|
// Calculate Residuals
|
|
std::vector<double> residuals;
|
|
double sumSqResid = 0.0;
|
|
for(size_t k=0; k<current_pts.size(); ++k) {
|
|
double val = f1->Eval(current_pts[k].first);
|
|
double res = current_pts[k].second - val;
|
|
residuals.push_back(res);
|
|
sumSqResid += res*res;
|
|
}
|
|
// double sigma = std::sqrt(sumSqResid / current_pts.size());
|
|
|
|
// // Filter
|
|
// std::vector<std::pair<double, double>> next_pts;
|
|
// for(size_t k=0; k<current_pts.size(); ++k) {
|
|
// if(std::abs(residuals[k]) < CLIP_SIGMA * sigma) {
|
|
// next_pts.push_back(current_pts[k]);
|
|
// }
|
|
// }
|
|
|
|
// if (next_pts.size() == current_pts.size()) {
|
|
// converged = true;
|
|
// delete gr; delete f1;
|
|
// break;
|
|
// }
|
|
// current_pts = next_pts;
|
|
// delete gr; delete f1;
|
|
}
|
|
|
|
if (!converged || finalSlope <= 0) continue;
|
|
|
|
// --- Store/Output ---
|
|
|
|
// 1. Save locally for the verification plot (hAll)
|
|
// Approximate local gain for plotting purposes only
|
|
double gW_local = std::sqrt(finalSlope);
|
|
double gR_local = 1.0 / gW_local;
|
|
gainW[id][ring][wedge] = gW_local;
|
|
gainR[id][ring][wedge] = gR_local;
|
|
gainValid[id][ring][wedge] = true;
|
|
|
|
// 2. Write to File for Minimizer
|
|
// Format: ID Wedge Ring Slope Error
|
|
outFile << id << " " << wedge << " " << ring << " " << finalSlope << " " << finalSlopeErr << std::endl;
|
|
|
|
// 3. Benchmark Info
|
|
benchFile << id << " " << wedge << " " << ring << " "
|
|
<< finalSlope << " " << finalSlopeErr << std::endl;
|
|
}
|
|
|
|
outFile.close();
|
|
benchFile.close();
|
|
std::cout << "Gain matching with Errors complete." << std::endl;
|
|
|
|
// Plotting the corrected data (Visual check using local approx gains)
|
|
for (auto &kv : dataPoints)
|
|
{
|
|
int id, ring, wedge;
|
|
std::tie(id, ring, wedge) = kv.first;
|
|
if (!gainValid[id][ring][wedge]) continue;
|
|
auto &pts = kv.second;
|
|
for (auto &pr : pts)
|
|
{
|
|
double corrWedge = pr.first * gainW[id][ring][wedge];
|
|
double corrRing = pr.second * gainR[id][ring][wedge];
|
|
plotter->Fill2D("hAll", 4000, 0, 16000, 4000, 0, 16000, corrWedge, corrRing);
|
|
}
|
|
}
|
|
|
|
plotter->FlushToDisk();
|
|
} |