ANASEN_analysis/GainMatchSX3.C

357 lines
12 KiB
C

#define GainMatchSX3_cxx
#include "GainMatchSX3.h"
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include <TProfile.h>
#include "Armory/ClassSX3.h"
#include "TGraphErrors.h"
#include "TMultiDimFit.h"
#include "TVector3.h"
TH2F *hSX3FvsB;
TH2F *hSX3FvsB_g;
TH2F *hsx3IndexVE;
TH2F *hsx3IndexVE_g;
TH2F *hSX3;
TH2F *hsx3Coin;
int padID = 0;
SX3 sx3_contr;
TCutG *cut;
TCutG *cut1;
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
void GainMatchSX3::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
sx3_contr.ConstructGeo();
// Load the TCutG object
TFile *cutFile = TFile::Open("sx3cut.root");
if (!cutFile || cutFile->IsZombie())
{
std::cerr << "Error: Could not open sx3cut.root" << std::endl;
return;
}
cut = dynamic_cast<TCutG *>(cutFile->Get("sx3cut"));
if (!cut)
{
std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl;
return;
}
cut->SetName("sx3cut"); // Ensure the cut has the correct name
// Load the TCutG object
TFile *cutFile1 = TFile::Open("UvD.root");
if (!cutFile1 || cutFile1->IsZombie())
{
std::cerr << "Error: Could not open UvD.root" << std::endl;
return;
}
cut1 = dynamic_cast<TCutG *>(cutFile1->Get("UvD"));
if (!cut1)
{
std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl;
return;
}
cut1->SetName("UvD");
}
Bool_t GainMatchSX3::Process(Long64_t entry)
{
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
for (int j = i + 1; j < sx3.multi; j++)
{
if (sx3.id[i] == 3)
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
if (sx3.e[i] > 100)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
}
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
// start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{ // Check if id of i belongs to the same detector and then add it to the detector ID vector
if (ID[i].first == sx3ID.back().first)
{ // count the nunmber of hits that belong to the same detector
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{ // the next event does not belong to the same detector, abandon the first event and continue with the next one
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
for (size_t i = 0; i < sx3ID.size(); i++)
{
int index = sx3ID[i].second;
// Check the channel number and assign it to the appropriate channel type
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
}
else
{
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}
else
{
sx3ChBk = sx3.ch[index] - 8;
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[index], sx3ChBk);
sx3EBk = sx3.e[index];
}
}
// If we have a valid front and back channel, fill the histograms
hSX3->Fill(sx3ChDn, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
// Fill the histogram for the front vs back
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
for (int i = 0; i < sx3.multi; i++)
{
if (sx3.id[i] == 3 && sx3.e[i] > 100)
{
// Fill the histogram for the front vs back with gain correction
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// Fill the index vs energy histogram
hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// }
// {
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
if (!hist2d)
{
hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000);
}
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[i], sx3ChBk);
// hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk))
// if (sx3.id[i] < 24 && sx3ChUp < 4 && sx3ChBk < 4 && std::isfinite(sx3EUp) && std::isfinite(sx3EDn) && std::isfinite(sx3EBk))
{
// Accumulate data for gain matching
dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
}
}
}
}
return kTRUE;
}
void GainMatchSX3::Terminate()
{
// --- Store fit coefficients in memory ---
std::map<std::tuple<int, int, int, int>, TVectorD> fitCoefficients;
const int MAX_DET = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
double gainArray[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool gainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
std::ofstream outFile("sx3_MultiDimFit_results.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening output file!" << std::endl;
return;
}
// === Loop over all (id, bk, up, dn) combinations ===
for (const auto &kv : dataPoints) {
auto [id, bk, u, d] = kv.first;
const auto &pts = kv.second;
if (pts.size() < 20) continue;
std::vector<double> x_bk, x_up, y_fsum;
for (const auto &pr : pts) {
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
if (eBk > 0 && eUp > 0 && eDn > 0) {
x_bk.push_back(eBk);
x_up.push_back(eUp);
y_fsum.push_back(eUp + eDn);
}
}
int nPoints = y_fsum.size();
if (nPoints < 20) continue;
TMultiDimFit *mdf = new TMultiDimFit(2, TMultiDimFit::kMonomials);
mdf->SetMaxPowers(new Int_t[2]{1, 1});
mdf->SetMinAngle(10);
mdf->SetMinRelativeError(1e-4);
double *x_row = new double[2];
for (int i = 0; i < nPoints; ++i) {
x_row[0] = x_bk[i];
x_row[1] = x_up[i];
mdf->AddRow(x_row, y_fsum[i]);
}
delete[] x_row;
mdf->Fit();
const TVectorD *coeffs = mdf->GetCoefficients();
if (!coeffs || coeffs->GetNoElements() == 0 || !TMath::Finite((*coeffs)(0))) {
std::cerr << "Fit failed for Det" << id << " B" << bk << " U" << u << " D" << d << std::endl;
delete mdf;
continue;
}
// Store coefficients in the map and write to file
fitCoefficients[kv.first] = *coeffs;
int nCoeffs = mdf->GetNCoefficients();
outFile << id << " " << bk << " " << u << " " << d;
printf("Fit for Det%d B%d U%d D%d -> ", id, bk, u, d);
for (int i = 0; i < nCoeffs; ++i) {
outFile << " " << (*coeffs)(i);
printf("p%d: %.4f ", i, (*coeffs)(i));
}
outFile << std::endl;
printf("\n");
delete mdf;
}
outFile.close();
std::cout << "Multi-dimensional gain matching complete. Results saved." << std::endl;
// --- Stage 2: Apply corrections and create new histograms ---
std::cout << "--- Stage 2: Applying Corrections and Visualizing Results ---" << std::endl;
TH2F *hCorrectedFvB = new TH2F("hCorrectedFvB", "Gain Corrected Data;Predicted Front Sum (from fit);Measured Front Sum", 400, 0, 16000, 400, 0, 16000);
for (const auto &kv : dataPoints) {
// Find the coefficients for this segment
if (fitCoefficients.find(kv.first) == fitCoefficients.end()) {
continue; // Skip if no valid fit was found
}
const TVectorD& coeffs = fitCoefficients[kv.first];
double p0 = coeffs(0);
double p1 = coeffs(1);
double p2 = coeffs(2);
// Loop over the data points for this segment and apply the correction
const auto &pts = kv.second;
for (const auto &pr : pts) {
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
// Calculate the predicted front sum using the fit parameters
double predicted_front_sum = p0 + p1 * eBk + p2 * eUp;
// The measured front sum is just the raw sum
double measured_front_sum = eUp + eDn;
// Fill the corrected histogram
hCorrectedFvB->Fill(predicted_front_sum, measured_front_sum);
}
}
// --- Stage 3: Draw the comparison canvases ---
gStyle->SetOptStat(1110);
TCanvas *c1 = new TCanvas("c1", "Gain Correction Results", 1200, 600);
c1->Divide(2, 1);
c1->cd(1);
hSX3FvsB_g->SetTitle("Before Correction (Gated)");
hSX3FvsB_g->GetXaxis()->SetTitle("Measured Front Sum (E_Up + E_Dn)");
hSX3FvsB_g->GetYaxis()->SetTitle("Measured Back E");
hSX3FvsB_g->Draw("colz");
c1->cd(2);
hCorrectedFvB->SetTitle("After Correction");
hCorrectedFvB->Draw("colz");
// Draw a perfect y=x line for comparison
TF1 *diag = new TF1("diag", "x", 0, 16000);
diag->SetLineColor(kRed);
diag->SetLineWidth(2);
diag->Draw("same");
}