319 lines
7.6 KiB
C++
319 lines
7.6 KiB
C++
#ifndef Analysis_Library_h
|
|
#define Analysis_Library_h
|
|
|
|
#include <TF1.h>
|
|
#include <TGraph.h>
|
|
#include <TSpectrum.h>
|
|
#include <TMath.h>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
std::vector<std::string> SplitStr(std::string tempLine, std::string splitter, int shift = 0){
|
|
|
|
std::vector<std::string> output;
|
|
|
|
size_t pos;
|
|
do{
|
|
pos = tempLine.find(splitter); // fine splitter
|
|
if( pos == 0 ){ //check if it is splitter again
|
|
tempLine = tempLine.substr(pos+1);
|
|
continue;
|
|
}
|
|
|
|
std::string secStr;
|
|
if( pos == std::string::npos ){
|
|
secStr = tempLine;
|
|
}else{
|
|
secStr = tempLine.substr(0, pos+shift);
|
|
tempLine = tempLine.substr(pos+shift);
|
|
}
|
|
|
|
//check if secStr is begin with space
|
|
while( secStr.substr(0, 1) == " "){
|
|
secStr = secStr.substr(1);
|
|
};
|
|
|
|
//check if secStr is end with space
|
|
while( secStr.back() == ' '){
|
|
secStr = secStr.substr(0, secStr.size()-1);
|
|
}
|
|
|
|
output.push_back(secStr);
|
|
//printf(" |%s---\n", secStr.c_str());
|
|
|
|
}while(pos != std::string::npos );
|
|
|
|
return output;
|
|
}
|
|
|
|
std::vector<std::vector<double>> combination(std::vector<double> arr, int r){
|
|
|
|
std::vector<std::vector<double>> output;
|
|
|
|
int n = arr.size();
|
|
std::vector<int> v(n);
|
|
std::fill(v.begin(), v.begin()+r, 1);
|
|
do {
|
|
//for( int i = 0; i < n; i++) { printf("%d ", v[i]); }; printf("\n");
|
|
|
|
std::vector<double> temp;
|
|
for (int i = 0; i < n; ++i) {
|
|
if (v[i]) {
|
|
//printf("%.1f, ", arr[i]);
|
|
temp.push_back(arr[i]);
|
|
}
|
|
}
|
|
//printf("\n");
|
|
|
|
output.push_back(temp);
|
|
|
|
} while (std::prev_permutation(v.begin(), v.end()));
|
|
|
|
return output;
|
|
}
|
|
|
|
double* sumMeanVar(std::vector<double> data){
|
|
|
|
int n = data.size();
|
|
double sum = 0;
|
|
for( int k = 0; k < n; k++) sum += data[k];
|
|
double mean = sum/n;
|
|
double var = 0;
|
|
for( int k = 0; k < n; k++) var += pow(data[k] - mean,2);
|
|
|
|
static double output[3];
|
|
output[0] = sum;
|
|
output[1] = mean;
|
|
output[2] = var;
|
|
|
|
return output;
|
|
}
|
|
|
|
double Rsquared(std::vector<double> x, std::vector<double> y){
|
|
|
|
if ( x.size() != y.size() ) return 0;
|
|
|
|
int n = x.size();
|
|
double * qX = sumMeanVar(x);
|
|
|
|
double meanX = qX[1];
|
|
double varX = qX[2];
|
|
|
|
double * qY = sumMeanVar(y);
|
|
double meanY = qY[1];
|
|
double varY = qY[2];
|
|
|
|
double sumXY = 0;
|
|
for( int k = 0; k < n; k++) sumXY += x[k] * y[k];
|
|
|
|
double r2 = (sumXY - n * meanX * meanY)/ sqrt( varX * varY );
|
|
|
|
return r2;
|
|
}
|
|
|
|
double* fitSlopeIntercept(std::vector<double> dataX, std::vector<double> dataY){
|
|
|
|
double * smvY = sumMeanVar(dataY);
|
|
double sumY = smvY[0];
|
|
double meanY = smvY[1];
|
|
|
|
double * smvX = sumMeanVar(dataX);
|
|
double sumX = smvX[0];
|
|
double meanX = smvX[1];
|
|
double varX = smvX[2];
|
|
|
|
int n = dataX.size();
|
|
double sumXY = 0;
|
|
for( int j = 0; j < n; j++) sumXY += dataX[j] * dataY[j];
|
|
|
|
double slope = ( sumXY - sumX * sumY/n ) / varX;
|
|
double intercept = meanY - slope * meanX;
|
|
|
|
static double output[2];
|
|
output[0] = slope;
|
|
output[1] = intercept;
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<std::vector<double>> FindMatchingPair(std::vector<double> enX, std::vector<double> enY){
|
|
|
|
//output[0] = fitEnergy;
|
|
//output[1] = refEnergy;
|
|
|
|
int nX = enX.size();
|
|
int nY = enY.size();
|
|
|
|
std::vector<double> fitEnergy;
|
|
std::vector<double> refEnergy;
|
|
|
|
if( nX > nY ){
|
|
|
|
std::vector<std::vector<double>> output = combination(enX, nY);
|
|
|
|
double * smvY = sumMeanVar(enY);
|
|
double sumY = smvY[0];
|
|
double meanY = smvY[1];
|
|
double varY = smvY[2];
|
|
|
|
double optRSquared = 0;
|
|
double absRSqMinusOne = 1;
|
|
int maxID = 0;
|
|
|
|
for( int k = 0; k < (int) output.size(); k++){
|
|
|
|
double * smvX = sumMeanVar(output[k]);
|
|
double sumX = smvX[0];
|
|
double meanX = smvX[1];
|
|
double varX = smvX[2];
|
|
|
|
double sumXY = 0;
|
|
for( int j = 0; j < nY; j++) sumXY += output[k][j] * enY[j];
|
|
|
|
double rSq = abs(sumXY - sumX*sumY/nY)/sqrt(varX*varY);
|
|
|
|
//for( int j = 0; j < nY ; j++){ printf("%.1f, ", output[k][j]); }; printf("| %.10f\n", rSq);
|
|
|
|
if( abs(rSq-1) < absRSqMinusOne ) {
|
|
absRSqMinusOne = abs(rSq-1);
|
|
optRSquared = rSq;
|
|
maxID = k;
|
|
}
|
|
}
|
|
|
|
fitEnergy = output[maxID];
|
|
refEnergy = enY;
|
|
|
|
printf(" R^2 : %.20f\n", optRSquared);
|
|
|
|
//calculation fitting coefficient
|
|
//double * si = fitSlopeIntercept(fitEnergy, refEnergy);
|
|
//printf( " y = %.4f x + %.4f\n", si[0], si[1]);
|
|
|
|
}else if( nX < nY ){
|
|
|
|
std::vector<std::vector<double>> output = combination(enY, nX);
|
|
|
|
|
|
double * smvX = sumMeanVar(enX);
|
|
double sumX = smvX[0];
|
|
double meanX = smvX[1];
|
|
double varX = smvX[2];
|
|
|
|
double optRSquared = 0;
|
|
double absRSqMinusOne = 1;
|
|
int maxID = 0;
|
|
|
|
for( int k = 0; k < (int) output.size(); k++){
|
|
|
|
double * smvY = sumMeanVar(output[k]);
|
|
double sumY = smvY[0];
|
|
double meanY = smvY[1];
|
|
double varY = smvY[2];
|
|
|
|
double sumXY = 0;
|
|
for( int j = 0; j < nX; j++) sumXY += output[k][j] * enX[j];
|
|
|
|
double rSq = abs(sumXY - sumX*sumY/nX)/sqrt(varX*varY);
|
|
|
|
//for( int j = 0; j < nX ; j++){ printf("%.1f, ", output[k][j]); }; printf("| %.10f\n", rSq);
|
|
|
|
if( abs(rSq-1) < absRSqMinusOne ) {
|
|
absRSqMinusOne = abs(rSq-1);
|
|
optRSquared = rSq;
|
|
maxID = k;
|
|
}
|
|
}
|
|
|
|
fitEnergy = enX;
|
|
refEnergy = output[maxID];
|
|
printf(" R^2 : %.20f\n", optRSquared);
|
|
|
|
}else{
|
|
fitEnergy = enX;
|
|
refEnergy = enY;
|
|
|
|
//if nX == nY, ther could be cases that only partial enX and enY are matched.
|
|
|
|
}
|
|
|
|
|
|
printf("fitEnergy = ");for( int k = 0; k < (int) fitEnergy.size() ; k++){ printf("%7.2f, ", fitEnergy[k]); }; printf("\n");
|
|
printf("refEnergy = ");for( int k = 0; k < (int) refEnergy.size() ; k++){ printf("%7.2f, ", refEnergy[k]); }; printf("\n");
|
|
|
|
std::vector<std::vector<double>> haha;
|
|
haha.push_back(fitEnergy);
|
|
haha.push_back(refEnergy);
|
|
|
|
return haha;
|
|
|
|
}
|
|
|
|
|
|
std::vector<std::vector<double>> LoadCorrectionParameters(TString corrFile, bool show=false){
|
|
|
|
printf(" load correction parameters : %s", corrFile.Data());
|
|
std::ifstream file;
|
|
file.open(corrFile.Data());
|
|
|
|
std::vector<std::vector<double>> corr;
|
|
corr.clear();
|
|
|
|
std::vector<double> detCorr;
|
|
detCorr.clear();
|
|
|
|
if( file.is_open() ){
|
|
|
|
while( file.good() ){
|
|
|
|
std::string line;
|
|
getline(file, line);
|
|
|
|
if( line.substr(0,1) == "#" ) continue;
|
|
if( line.substr(0,2) == "//" ) continue;
|
|
if( line.size() == 0 ) continue;
|
|
|
|
//printf("%s\n", line.c_str());
|
|
std::vector<std::string> temp = SplitStr(line, " ");
|
|
|
|
detCorr.clear();
|
|
for( int i = 0; i < (int) temp.size() ; i++){
|
|
detCorr.push_back(std::stod(temp[i]));
|
|
}
|
|
corr.push_back(detCorr);
|
|
}
|
|
|
|
file.close();
|
|
|
|
printf(".... done\n");
|
|
if( show ){
|
|
printf("===== correction parameters \n");
|
|
for( int i = 0; i < (int) corr.size(); i++){
|
|
printf("row : %2d | ", i );
|
|
int len = (int) corr[i].size();
|
|
for( int j = 0; j < len - 1 ; j++){
|
|
printf("%14.6f, ", corr[i][j]);
|
|
}
|
|
printf("%14.6f\n", corr[i][len-1]);
|
|
}
|
|
}
|
|
|
|
}else{
|
|
printf(".... fail\n");
|
|
std::vector<double> temp = {0, 1};
|
|
for( int i = 0; i < 36; i++){
|
|
corr.push_back(temp);
|
|
}
|
|
}
|
|
|
|
return corr;
|
|
}
|
|
|
|
#endif
|
|
|