363 lines
11 KiB
C
363 lines
11 KiB
C
|
#ifndef MCPandPSD_h
|
||
|
#define MCPandPSD_h
|
||
|
|
||
|
/*********************************************
|
||
|
* This is online analyzer for RASIOR, ANL
|
||
|
*
|
||
|
* Created by Ryan @ 2023-10-16
|
||
|
*
|
||
|
* ******************************************/
|
||
|
#include "Analyser.h"
|
||
|
#include <cmath>
|
||
|
#include "math.h"
|
||
|
#include <algorithm>
|
||
|
|
||
|
|
||
|
class MCPandPSD : public Analyzer{
|
||
|
|
||
|
public:
|
||
|
MCPandPSD(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){
|
||
|
|
||
|
|
||
|
SetUpdateTimeInSec(4.0);
|
||
|
|
||
|
RedefineEventBuilder({0}); // only builder for the 0-th digitizer.
|
||
|
tick2ns = digi[0]->GetTick2ns();
|
||
|
|
||
|
SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100.
|
||
|
evtbder = GetEventBuilder();
|
||
|
evtbder->SetTimeWindow(500);
|
||
|
|
||
|
//========== use the influx from the Analyzer
|
||
|
influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/");
|
||
|
dataBaseName = "testing";
|
||
|
|
||
|
SetUpCanvas(); // see below
|
||
|
|
||
|
};
|
||
|
|
||
|
void SetUpCanvas();
|
||
|
|
||
|
public slots:
|
||
|
void UpdateHistograms();
|
||
|
|
||
|
|
||
|
private:
|
||
|
|
||
|
MultiBuilder *evtbder;
|
||
|
|
||
|
//Histogram2D * hPID;
|
||
|
|
||
|
Histogram2D * hXYE; // 2D energy plot: e[2]+e[3] versus e[0]+e[1]
|
||
|
|
||
|
Histogram1D * hX; // X position:((e[0]-e[1])/(e[0]+e[1]))
|
||
|
Histogram1D * hY; // Y position:((e[2]-e[3])/(e[2]+e[3]))
|
||
|
|
||
|
Histogram1D * hXmcp; // X position
|
||
|
Histogram1D * hYmcp; // Y position
|
||
|
|
||
|
Histogram2D * hXY; // 2D position plot: ((e[2]-e[3])/(e[2]+e[3])) versus ((e[0]-e[1])/(e[0]+e[1]))
|
||
|
Histogram2D * hXYMCP; // 2D position plot for MCP: ((e[2]+e[3])/((e[0]+e[1]+e[2]+e[3]))) versus ((e[0]+e[1])/(e[0]+e[1]+e[2]+e[3]))
|
||
|
Histogram2D * hXYr; // 2D position plot rotated for MCP:
|
||
|
|
||
|
|
||
|
Histogram2D * hXEdE1; //X energy versus dE signal 1
|
||
|
Histogram2D * hYEdE1; //Y energy versus dE signal 1
|
||
|
|
||
|
Histogram2D * hXEdE2; //X energy versus dE signal 2
|
||
|
Histogram2D * hYEdE2; //Y energy versus dE signal 2
|
||
|
/*
|
||
|
Histogram1D * he0; // e0: signal 0 from PSD
|
||
|
Histogram1D * he1; // e1: signal 1 from PSD
|
||
|
Histogram1D * he2; // e2: signal 2 from PSD
|
||
|
Histogram1D * he3; // e3: signal 3 from PSD
|
||
|
|
||
|
Histogram1D * hmcp0; // s0: signal 0 from MCP
|
||
|
Histogram1D * hmcp1; // s1: signal 1 from MCP
|
||
|
Histogram1D * hmcp2; // s2: signal 2 from MCP
|
||
|
Histogram1D * hmcp3; // s3: signal 3 from MCP
|
||
|
*/
|
||
|
|
||
|
|
||
|
int tick2ns;
|
||
|
|
||
|
//float dE, E;
|
||
|
//unsigned long long dE_t, E_t;
|
||
|
|
||
|
float e0, e1, e2, e3, dE1, dE2;
|
||
|
unsigned long long t0, t1, t2, t3, dE1_t, dE2_t;
|
||
|
|
||
|
float s0, s1, s2, s3;
|
||
|
unsigned long long s_t0, s_t1, s_t2, s_t3;
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
inline void MCPandPSD::SetUpCanvas(){
|
||
|
|
||
|
setGeometry(0, 0, 1500, 2000);
|
||
|
|
||
|
//============ histograms
|
||
|
//hPID = new Histogram2D("RAISOR2", "E", "dE", 100, 0, 11000, 100, 0, 11000, this);
|
||
|
//layout->addWidget(hPID, 0, 0);
|
||
|
|
||
|
hXY = new Histogram2D("2D position plot PSD_E", "X position", "Y position", 200, -1, 1, 200, -1, 1, this);
|
||
|
layout->addWidget(hXY, 0, 0);
|
||
|
|
||
|
hX = new Histogram1D("X position", "X", 300, -1, 1, this);
|
||
|
layout->addWidget(hX, 0, 1);
|
||
|
|
||
|
hY = new Histogram1D("Y position", "Y", 300, -1, 1, this);
|
||
|
layout->addWidget(hY, 0, 2);
|
||
|
/*
|
||
|
he0 = new Histogram1D("PSD_E 0", "e0", 200, 0, 8000, this);
|
||
|
layout->addWidget(he0, 0, 1);
|
||
|
|
||
|
he1 = new Histogram1D("PSD_E 1", "e1", 200, 0, 8000, this);
|
||
|
layout->addWidget(he1, 0, 2);
|
||
|
|
||
|
he2 = new Histogram1D("PSD_E 2", "e2", 200, 0, 8000, this);
|
||
|
layout->addWidget(he2, 0, 3);
|
||
|
|
||
|
he3 = new Histogram1D("PSD_E 3", "e3", 200, 0, 8000, this);
|
||
|
layout->addWidget(he3, 0, 4);
|
||
|
*/
|
||
|
hXYMCP = new Histogram2D("2D position MCP", "X position", "Y position", 500, 0, 1, 500, 0, 1, this);
|
||
|
layout->addWidget(hXYMCP, 1, 1);
|
||
|
|
||
|
hXYr = new Histogram2D("2D rot pos MCP", "Xr position", "Yr position", 200, -0.5, 0.5, 200, -0.5, 0.5, this);
|
||
|
layout->addWidget(hXYr, 1, 0);
|
||
|
/*
|
||
|
hmcp0 = new Histogram1D("MCP 0", "s0", 200, 0, 8000, this);
|
||
|
layout->addWidget(hmcp0, 1, 1);
|
||
|
|
||
|
hmcp1 = new Histogram1D("MCP 1", "s1", 200, 0, 8000, this);
|
||
|
layout->addWidget(hmcp1, 1, 2);
|
||
|
|
||
|
hmcp2 = new Histogram1D("MCP 2", "s2", 200, 0, 8000, this);
|
||
|
layout->addWidget(hmcp2, 1, 3);
|
||
|
|
||
|
hmcp3 = new Histogram1D("MCP 3", "s3", 200, 0, 8000, this);
|
||
|
layout->addWidget(hmcp3, 1, 4);
|
||
|
*/
|
||
|
hXmcp = new Histogram1D("X pos rot MCP", "X", 250, -0.5, 0.5, this);
|
||
|
layout->addWidget(hXmcp, 1, 2);
|
||
|
|
||
|
hYmcp = new Histogram1D("Y pos rot MCP", "Y", 250, -0.5, 0.5, this);
|
||
|
layout->addWidget(hYmcp, 1, 3);
|
||
|
|
||
|
hXEdE1 = new Histogram2D("X energy versus dE signal 1", "Ex", "dE signal 1", 100, 0, 8000, 100, 0, 8000, this);
|
||
|
layout->addWidget(hXEdE1, 2, 0);
|
||
|
|
||
|
hYEdE1 = new Histogram2D("Y energy versus dE signal 1", "Ey", "dE signal 1", 100, 0, 8000, 100, 0, 8000, this);
|
||
|
layout->addWidget(hYEdE1, 2, 1);
|
||
|
|
||
|
hXEdE2 = new Histogram2D("X energy versus dE signal 2", "Ex", "dE signal 2", 100, 0, 8000, 100, 0, 8000, this);
|
||
|
layout->addWidget(hXEdE2, 2, 2);
|
||
|
|
||
|
hYEdE2 = new Histogram2D("Y energy versus dE signal 2", "Ey", "dE signal 2", 100, 0, 8000, 100, 0, 8000, this);
|
||
|
layout->addWidget(hYEdE2, 2, 3);
|
||
|
|
||
|
hXYE = new Histogram2D("2D energy plot", "Ex", "Ey", 100, 0, 8000, 100, 0, 8000, this);
|
||
|
layout->addWidget(hXYE, 0, 3);
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
inline void MCPandPSD::UpdateHistograms(){
|
||
|
|
||
|
if( this->isVisible() == false ) return;
|
||
|
|
||
|
BuildEvents(false); // call the event builder to build events
|
||
|
|
||
|
//============ Get events, and do analysis
|
||
|
long eventBuilt = evtbder->eventBuilt;
|
||
|
if( eventBuilt == 0 ) return;
|
||
|
|
||
|
//============ Get the cut list, if any
|
||
|
/*
|
||
|
QList<QPolygonF> cutList = hPID->GetCutList();
|
||
|
const int nCut = cutList.count();
|
||
|
unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0};
|
||
|
unsigned int count[nCut]={0};
|
||
|
|
||
|
QList<QPolygonF> cutList1 = hXEdE1->GetCutList();
|
||
|
const int nCut1 = cutList1.count();
|
||
|
unsigned long long tMin1[nCut1] = {0xFFFFFFFFFFFFFFFF}, tMax1[nCut1] = {0};
|
||
|
unsigned int count1[nCut1]={0};
|
||
|
|
||
|
QList<QPolygonF> cutList2 = hYEdE1->GetCutList();
|
||
|
const int nCut2 = cutList2.count();
|
||
|
unsigned long long tMin2[nCut2] = {0xFFFFFFFFFFFFFFFF}, tMax2[nCut2] = {0};
|
||
|
unsigned int count2[nCut2]={0};
|
||
|
|
||
|
QList<QPolygonF> cutList3 = hXY->GetCutList();
|
||
|
const int nCut3 = cutList3.count();
|
||
|
unsigned long long tMin3[nCut3] = {0xFFFFFFFFFFFFFFFF}, tMax3[nCut3] = {0};
|
||
|
unsigned int count3[nCut3]={0};
|
||
|
*/
|
||
|
//============ Processing data and fill histograms
|
||
|
long eventIndex = evtbder->eventIndex;
|
||
|
long eventStart = eventIndex - eventBuilt + 1;
|
||
|
if(eventStart < 0 ) eventStart += MaxNEvent;
|
||
|
|
||
|
for( long i = eventStart ; i <= eventIndex; i ++ ){
|
||
|
std::vector<Hit> event = evtbder->events[i];
|
||
|
//printf("-------------- %ld\n", i);
|
||
|
|
||
|
if( event.size() == 0 ) return;
|
||
|
|
||
|
|
||
|
if( event.size() == 0 ) return;
|
||
|
//if( event.size() < 2 ) return;
|
||
|
cout<< "event size " << event.size() <<endl;
|
||
|
|
||
|
s0 = 0;
|
||
|
s1 = 0;
|
||
|
s2 = 0;
|
||
|
s3 = 0;
|
||
|
|
||
|
s_t0 = 0;
|
||
|
s_t1 = 0;
|
||
|
s_t2 = 0;
|
||
|
s_t3 = 0;
|
||
|
|
||
|
for( int k = 0; k < (int) event.size(); k++ ){
|
||
|
//event[k].Print();
|
||
|
|
||
|
if( event[k].ch == 2 ) {s0 = event[k].energy; s_t0 = event[k].timestamp;} //
|
||
|
if( event[k].ch == 3 ) {s1= event[k].energy; s_t1 = event[k].timestamp;} // The 4 output signals from the
|
||
|
if( event[k].ch == 4 ) {s2 = event[k].energy; s_t2 = event[k].timestamp;} // MCP detector
|
||
|
if( event[k].ch == 5 ) {s3= event[k].energy; s_t3 = event[k].timestamp;} //
|
||
|
|
||
|
if( event[k].ch == 10 ) {e0 = event[k].energy; t0 = event[k].timestamp;} //
|
||
|
if( event[k].ch == 11 ) {e1= event[k].energy; t1 = event[k].timestamp;} // The 4 output signals from the
|
||
|
if( event[k].ch == 12 ) {e2 = event[k].energy; t2 = event[k].timestamp;} // position sensitive E detector
|
||
|
if( event[k].ch == 13 ) {e3= event[k].energy; t3 = event[k].timestamp;} //
|
||
|
|
||
|
if( event[k].ch == 14 ) {dE1 = event[k].energy; dE1_t = event[k].timestamp;} // The 2 output signals from the
|
||
|
if( event[k].ch == 15 ) {dE2= event[k].energy; dE2_t = event[k].timestamp;} // square dE detector
|
||
|
}
|
||
|
|
||
|
if (s0>10 && s1>10 && s2>10 && s3>10) {
|
||
|
float_t rotation_angle = 31.;
|
||
|
double_t Xr = (((s1+s2)/(s0+s1+s2+s3))-0.51)*cos(-rotation_angle*M_PI/180)-(((s2+s3)/(s0+s1+s2+s3))-0.51)*sin(-rotation_angle*M_PI/180);
|
||
|
double_t Yr = (((s1+s2)/(s0+s1+s2+s3))-0.51)*sin(-rotation_angle*M_PI/180)+(((s2+s3)/(s0+s1+s2+s3))-0.51)*cos(-rotation_angle*M_PI/180);
|
||
|
// printf("(E, dE) = (%f, %f)\n", E, dE);
|
||
|
//hPID->Fill(E + RandomGauss(0, 100), dE+ RandomGauss(0, 100)); // x, y
|
||
|
|
||
|
hXY->Fill(((e0-e1)/(e0+e1)),((e3-e2)/(e2+e3)));
|
||
|
hXYMCP->Fill(((s1+s2)/(s0+s1+s2+s3)),((s2+s3)/(s0+s1+s2+s3)));
|
||
|
|
||
|
hX->Fill(((e0-e1)/(e0+e1)));
|
||
|
hY->Fill(((e3-e2)/(e2+e3)));
|
||
|
hXmcp->Fill(Xr);
|
||
|
hYmcp->Fill(Yr);
|
||
|
hXEdE1->Fill((e0+e1),dE1);
|
||
|
hYEdE1->Fill(e2+e3,dE1);
|
||
|
hXEdE2->Fill(e0+e1,dE2);
|
||
|
hYEdE2->Fill(e2+e3,dE2);
|
||
|
hXYE->Fill(e0+e1,e2+e3);
|
||
|
hXYr->Fill(Xr,Yr);
|
||
|
}
|
||
|
/*
|
||
|
he0->Fill(e0);
|
||
|
he1->Fill(e1);
|
||
|
he2->Fill(e2);
|
||
|
he3->Fill(e3);
|
||
|
|
||
|
hmcp0->Fill(s0);
|
||
|
hmcp1->Fill(s1);
|
||
|
hmcp2->Fill(s2);
|
||
|
hmcp3->Fill(s3);
|
||
|
*/
|
||
|
//check events inside any Graphical cut and extract the rate
|
||
|
/*
|
||
|
for(int p = 0; p < cutList.count(); p++ ){
|
||
|
if( cutList[p].isEmpty() ) continue;
|
||
|
if( cutList[p].containsPoint(QPointF(E, dE), Qt::OddEvenFill) ){
|
||
|
if( dE_t < tMin[p] ) tMin[p] = dE_t;
|
||
|
if( dE_t > tMax[p] ) tMax[p] = dE_t;
|
||
|
count[p] ++;
|
||
|
//printf(".... %d \n", count[p]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for(int p = 0; p < cutList1.count(); p++ ){
|
||
|
if( cutList1[p].isEmpty() ) continue;
|
||
|
if( cutList1[p].containsPoint(QPointF((e0+e1), dE1), Qt::OddEvenFill) ){
|
||
|
if( dE1_t < tMin1[p] ) tMin1[p] = dE1_t;
|
||
|
if( dE1_t > tMax1[p] ) tMax1[p] = dE1_t;
|
||
|
count1[p] ++;
|
||
|
//printf("hXX.... %d \n", count1[p]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for(int p = 0; p < cutList2.count(); p++ ){
|
||
|
if( cutList2[p].isEmpty() ) continue;
|
||
|
if( cutList2[p].containsPoint(QPointF((e2+e3), dE1), Qt::OddEvenFill) ){
|
||
|
if( dE1_t < tMin2[p] ) tMin2[p] = dE1_t;
|
||
|
if( dE1_t > tMax2[p] ) tMax2[p] = dE1_t;
|
||
|
count2[p] ++;
|
||
|
//printf("hXX.... %d \n", count2[p]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for(int p = 0; p < cutList3.count(); p++ ){
|
||
|
if( cutList3[p].isEmpty() ) continue;
|
||
|
if( cutList3[p].containsPoint(QPointF(((e0-e1)/(e0+e1)), ((e2-e3)/(e2+e3))), Qt::OddEvenFill) ){
|
||
|
if( ((t2-t3)/(t2+t3)) < tMin3[p] ) tMin3[p] = ((t2-t3)/(t2+t3));
|
||
|
if( ((t2-t3)/(t2+t3)) > tMax3[p] ) tMax3[p] = ((t2-t3)/(t2+t3));
|
||
|
count3[p] ++;
|
||
|
//printf("hXX.... %d \n", count3[p]);
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
//hPID->UpdatePlot();
|
||
|
hXY->UpdatePlot();
|
||
|
hXYr->UpdatePlot();
|
||
|
hXYMCP->UpdatePlot();
|
||
|
|
||
|
hX->UpdatePlot();
|
||
|
hY->UpdatePlot();
|
||
|
hXmcp->UpdatePlot();
|
||
|
hYmcp->UpdatePlot();
|
||
|
hXEdE1->UpdatePlot();
|
||
|
hYEdE1->UpdatePlot();
|
||
|
hXEdE2->UpdatePlot();
|
||
|
hYEdE2->UpdatePlot();
|
||
|
hXYE->UpdatePlot();
|
||
|
/*
|
||
|
he0->UpdatePlot();
|
||
|
he1->UpdatePlot();
|
||
|
he2->UpdatePlot();
|
||
|
he3->UpdatePlot();
|
||
|
|
||
|
hmcp0->UpdatePlot();
|
||
|
hmcp1->UpdatePlot();
|
||
|
hmcp2->UpdatePlot();
|
||
|
hmcp3->UpdatePlot();
|
||
|
*/
|
||
|
//========== output to Influx
|
||
|
/*
|
||
|
QList<QString> cutNameList = hPID->GetCutNameList();
|
||
|
for( int p = 0; p < cutList.count(); p ++){
|
||
|
if( cutList[p].isEmpty() ) continue;
|
||
|
double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec
|
||
|
double rate = count[p]*1.0/(dT);
|
||
|
//printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]);
|
||
|
//printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate);
|
||
|
|
||
|
influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate));
|
||
|
influx->WriteData(dataBaseName);
|
||
|
influx->ClearDataPointsBuffer();
|
||
|
}
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|