FSUDAQ_Qt6/analyzers/SplitPoleAnalyzer.h

554 lines
16 KiB
C
Raw Normal View History

2023-06-12 16:32:01 -04:00
#ifndef SPLITPOLEANLAYZER_H
#define SPLITPOLEANLAYZER_H
/*********************************************
* This is online analyzer for Split-Pole at FSU
*
* It is a template for other analyzer.
*
* Any new analyzer add to added to FSUDAQ.cpp
* 1) add include header
* 2) in OpenAnalyzer(), change the new
2023-06-12 16:32:01 -04:00
*
* add the source file in FSUDAQ_Qt6.pro then compile
2023-06-12 16:32:01 -04:00
* >qmake6 FSUDAQ_Qt6.pro
* >make
*
* ******************************************/
#include "Analyser.h"
#include "Isotope.h"
2023-06-12 16:32:01 -04:00
2023-08-14 11:26:52 -04:00
#include <QRandomGenerator>
#include <cmath>
#include <random>
// static double randZeroToOne() {
// return static_cast<double>(rand()) / RAND_MAX;
// }
// // Box-Muller transform to generate random Gaussian numbers
// static double generateGaussian(double mean, double stddev) {
// static bool hasSpare = false;
// static double spare;
// if (hasSpare) {
// hasSpare = false;
// return mean + stddev * spare;
// } else {
// double u, v, s;
// do {
// u = 2.0 * randZeroToOne() - 1.0;
// v = 2.0 * randZeroToOne() - 1.0;
// s = u * u + v * v;
// } while (s >= 1.0 || s == 0.0);
// s = std::sqrt(-2.0 * std::log(s) / s);
// spare = v * s;
// hasSpare = true;
// return mean + stddev * u * s;
// }
// }
2023-10-16 16:07:14 -04:00
namespace SPS{
namespace ChMap{
2023-10-16 16:07:14 -04:00
const short ScinR = 0;
const short ScinL = 1;
const short dFR = 9;
const short dFL = 8;
const short dBR = 10;
const short dBL = 11;
const short Cathode = 7;
const short AnodeF = 13;
const short AnodeB = 15;
};
2023-10-16 16:07:14 -04:00
const double c = 299.792458; // mm/ns
const double pi = M_PI;
const double deg2rad = pi/180.;
2023-10-20 16:17:50 -04:00
const double DISPERSION = 1.96; // x-position/rho
const double MAGNIFICATION = 0.39; // in x-position
2023-10-16 16:07:14 -04:00
}
class SplitPoleHit{
public:
SplitPoleHit(){
Clear();
}
unsigned int eSR; unsigned long long tSR;
unsigned int eSL; unsigned long long tSL;
unsigned int eFR; unsigned long long tFR;
unsigned int eFL; unsigned long long tFL;
unsigned int eBR; unsigned long long tBR;
unsigned int eBL; unsigned long long tBL;
unsigned int eCath; unsigned long long tCath;
unsigned int eAF; unsigned long long tAF;
unsigned int eAB; unsigned long long tAB;
float eSAvg;
float x1, x2, theta;
float xAvg;
2023-10-20 16:17:50 -04:00
double GetQ0() const {return Q0;}
double GetRho0() const {return rho0;}
double GetZoffset() const {return zOffset;}
2023-10-20 16:17:50 -04:00
void CalConstants(QString targetStr, QString beamStr, QString recoilStr, double energyMeV, double angleDeg){
target.SetIsoByName(targetStr.toStdString());
beam.SetIsoByName(beamStr.toStdString());
recoil.SetIsoByName(recoilStr.toStdString());
2023-10-20 16:17:50 -04:00
heavyRecoil.SetIso(target.A + beam.A - recoil.A, target.Z + beam.Z - recoil.Z);
angleDegree = angleDeg; // degree
beamKE = energyMeV; // MeV
2023-10-20 16:17:50 -04:00
Ei = target.Mass + beamKE + beam.Mass;
k1 = sqrt( 2*beam.Mass*beamKE + beamKE*beamKE);
cs = cos(angleDegree * SPS::deg2rad);
ma = recoil.Mass;
mb = heavyRecoil.Mass;
isConstantCal = true;
}
double CalRecoilMomentum(double Ex){
if( !isConstantCal ) return 0;
float p = Ei*Ei - k1*k1;
float q = ma*ma - (mb + Ex)*(mb + Ex);
float x = k1* ( p + q) * cs;
float y = pow( p, 2) + pow(q, 2)- 2 * Ei * Ei * (ma* ma + (mb + Ex)*(mb + Ex)) + 2 * k1 * k1 * (ma*ma * cos(2* angleDegree * SPS::deg2rad) + (mb + Ex)*(mb + Ex));
float z = 2 * ( Ei*Ei - k1*k1 * cs * cs) ;
return (x + Ei * sqrt(y))/z;
2023-10-20 16:17:50 -04:00
}
double Momentum2Ex(double ka){
return sqrt( Ei*Ei - k1*k1 + ma*ma + 2 * cs * k1 * ka + sqrt(ma*ma + ka*ka));
}
double Rho2Ex(double rhoInM){
double ka = rhoInM * (target.Z * Bfield * SPS::c);
return Momentum2Ex(ka);
}
void CalZoffset(double magFieldinT){
2023-10-20 16:17:50 -04:00
Bfield = magFieldinT;
2023-10-20 16:17:50 -04:00
if( !isConstantCal ) return;
2023-10-20 16:17:50 -04:00
double recoilP = CalRecoilMomentum(0);
2023-10-20 16:17:50 -04:00
Q0 = target.Mass + beam.Mass - recoil.Mass - heavyRecoil.Mass;
2023-10-20 16:17:50 -04:00
double recoilKE = sqrt(ma*ma + recoilP* recoilP) - ma;
2023-10-20 16:17:50 -04:00
printf("Q value : %f \n", Q0);
printf("recoil enegry for ground state: %f MeV = %f MeV/c\n", recoilKE, recoilP);
2023-10-20 16:17:50 -04:00
rho0 = recoilP/(target.Z * Bfield * SPS::c); // in m
double haha = sqrt( ma * beam.Mass * beamKE / recoilKE );
double k = haha * sin(angleDegree * SPS::deg2rad) / ( ma + mb - haha * cs);
zOffset = -1000.0 * rho0 * k * SPS::DISPERSION * SPS::MAGNIFICATION;
printf("rho: %f m; z-offset: %f cm\n", rho0, zOffset);
}
void Clear(){
eSR = 0; tSR = 0;
eSL = 0; tSL = 0;
eFR = 0; tFR = 0;
eFL = 0; tFL = 0;
eBR = 0; tBR = 0;
eBL = 0; tBL = 0;
eCath = 0; tCath = 0;
eAF = 0; tAF = 0;
eAB = 0; tAB = 0;
eSAvg = -1;
x1 = NAN;
x2 = NAN;
theta = NAN;
xAvg = NAN;
2023-10-20 16:17:50 -04:00
isConstantCal = false;
}
void CalData(){
if( eSR > 0 && eSL > 0 ) eSAvg = (eSR + eSL)/2;
if( eSR > 0 && eSL == 0 ) eSAvg = eSR;
if( eSR == 0 && eSL > 0 ) eSAvg = eSL;
if( tFR > 0 && tFL > 0 ) x1 = (tFL - tFR)/2./2.1;
if( tBR > 0 && tBL > 0 ) x2 = (tBL - tBR)/2./1.98;
2023-06-12 16:32:01 -04:00
if( !std::isnan(x1) && !std::isnan(x2)) {
if( x2 > x1 ) {
theta = atan((x2-x1)/36.0);
}else if(x2 < x1){
2023-10-16 16:07:14 -04:00
theta = SPS::pi + atan((x2-x1)/36.0);
}else{
2023-10-16 16:07:14 -04:00
theta = SPS::pi * 0.5;
}
double w1 = 0.5 - zOffset/4.28625;
xAvg = w1 * x1 + (1-w1)* x2;
}
}
private:
Isotope target;
Isotope beam;
Isotope recoil;
Isotope heavyRecoil;
double Bfield;
double angleDegree;
double beamKE;
double zOffset;
2023-10-20 16:17:50 -04:00
double Q0, rho0;
bool isConstantCal;
double Ei, k1, cs, ma, mb;
};
//^===========================================
//^===========================================
2023-06-12 16:32:01 -04:00
class SplitPole : public Analyzer{
Q_OBJECT
public:
SplitPole(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){
SetUpdateTimeInSec(1.0);
RedefineEventBuilder({0}); // only build for the 0-th digitizer, otherwise, it will build event accross all digitizers
tick2ns = digi[0]->GetTick2ns();
2023-06-20 16:18:02 -04:00
SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100.
evtbder = GetEventBuilder();
2023-06-20 16:18:02 -04:00
evtbder->SetTimeWindow(500);
//========== use the influx from the Analyzer
influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/");
dataBaseName = "testing";
SetUpCanvas();
leTarget->setText("12C");
leBeam->setText("d");
leRecoil->setText("p");
sbBfield->setValue(0.76);
sbAngle->setValue(20);
sbEnergy->setValue(16);
2023-10-20 16:17:50 -04:00
hit.CalConstants(leTarget->text(), leBeam->text(), leRecoil->text(), sbEnergy->value(), sbAngle->value());
2023-10-20 16:17:50 -04:00
hit.CalZoffset(sbBfield->value());
hit.Clear();
}
/// ~SplitPole(); // comment out = defalt destructor
2023-06-12 16:32:01 -04:00
void SetUpCanvas();
2023-10-20 16:17:50 -04:00
void FillConstants();
2023-06-12 16:32:01 -04:00
public slots:
void UpdateHistograms();
private:
MultiBuilder *evtbder;
2023-06-12 16:32:01 -04:00
// declaie histograms
Histogram2D * hPID;
2023-06-12 16:32:01 -04:00
Histogram1D * h1;
Histogram1D * h1g;
Histogram1D * hMulti;
2023-06-12 16:32:01 -04:00
int tick2ns;
SplitPoleHit hit;
RSpinBox * sbBfield;
QLineEdit * leTarget;
QLineEdit * leBeam;
QLineEdit * leRecoil;
RSpinBox * sbEnergy;
RSpinBox * sbAngle;
2023-08-28 15:02:56 -04:00
QCheckBox * runAnalyzer;
2023-10-20 16:17:50 -04:00
QLineEdit * leMassTablePath;
QLineEdit * leQValue;
QLineEdit * leGSRho;
QLineEdit * leZoffset;
2023-06-12 16:32:01 -04:00
};
2023-10-20 16:17:50 -04:00
inline void SplitPole::FillConstants(){
leQValue->setText(QString::number(hit.GetQ0()));
leGSRho->setText(QString::number(hit.GetRho0()));
leZoffset->setText(QString::number(hit.GetZoffset()));
}
2023-06-12 16:32:01 -04:00
inline void SplitPole::SetUpCanvas(){
setGeometry(0, 0, 1600, 1000);
{//^====== magnet and reaction setting
QGroupBox * box = new QGroupBox("Configuration", this);
layout->addWidget(box, 0, 0);
QGridLayout * boxLayout = new QGridLayout(box);
boxLayout->setAlignment(Qt::AlignTop | Qt::AlignLeft);
box->setLayout(boxLayout);
QLabel * lbBfield = new QLabel("B-field [T] ", box);
lbBfield->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbBfield, 0, 2);
sbBfield = new RSpinBox(box);
sbBfield->setDecimals(3);
sbBfield->setSingleStep(0.05);
boxLayout->addWidget(sbBfield, 0, 3);
QLabel * lbTarget = new QLabel("Target ", box);
lbTarget->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbTarget, 0, 0);
leTarget = new QLineEdit(box);
boxLayout->addWidget(leTarget, 0, 1);
QLabel * lbBeam = new QLabel("Beam ", box);
lbBeam->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbBeam, 1, 0);
leBeam = new QLineEdit(box);
boxLayout->addWidget(leBeam, 1, 1);
QLabel * lbRecoil = new QLabel("Recoil ", box);
lbRecoil->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbRecoil, 2, 0);
leRecoil = new QLineEdit(box);
boxLayout->addWidget(leRecoil, 2, 1);
QLabel * lbEnergy = new QLabel("Beam Energy [MeV] ", box);
lbEnergy->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbEnergy, 1, 2);
sbEnergy = new RSpinBox(box);
sbEnergy->setDecimals(3);
sbEnergy->setSingleStep(1.0);
boxLayout->addWidget(sbEnergy, 1, 3);
QLabel * lbAngle = new QLabel("SPS Angle [Deg] ", box);
lbAngle->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbAngle, 2, 2);
sbAngle = new RSpinBox(box);
sbAngle->setDecimals(3);
sbAngle->setSingleStep(1.0);
boxLayout->addWidget(sbAngle, 2, 3);
boxLayout->setColumnStretch(0, 1);
boxLayout->setColumnStretch(1, 2);
boxLayout->setColumnStretch(2, 1);
boxLayout->setColumnStretch(3, 2);
connect(leTarget, &QLineEdit::returnPressed, this, [=](){
2023-10-20 16:17:50 -04:00
hit.CalConstants(leTarget->text(), leBeam->text(), leRecoil->text(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(leBeam, &QLineEdit::returnPressed, this, [=](){
2023-10-20 16:17:50 -04:00
hit.CalConstants(leTarget->text(), leBeam->text(), leRecoil->text(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(leRecoil, &QLineEdit::returnPressed, this, [=](){
2023-10-20 16:17:50 -04:00
hit.CalConstants(leTarget->text(), leBeam->text(), leRecoil->text(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(sbBfield, &RSpinBox::returnPressed, this, [=](){
2023-10-20 16:17:50 -04:00
hit.CalConstants(leTarget->text(), leBeam->text(), leRecoil->text(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(sbAngle, &RSpinBox::returnPressed, this, [=](){
2023-10-20 16:17:50 -04:00
hit.CalConstants(leTarget->text(), leBeam->text(), leRecoil->text(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(sbEnergy, &RSpinBox::returnPressed, this, [=](){
2023-10-20 16:17:50 -04:00
hit.CalConstants(leTarget->text(), leBeam->text(), leRecoil->text(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
2023-08-28 15:02:56 -04:00
runAnalyzer = new QCheckBox("Run Analyzer", this);
boxLayout->addWidget(runAnalyzer, 4, 1);
2023-10-20 16:17:50 -04:00
QLabel * lbMassTablePath = new QLabel("Mass Table Path : ", box);
lbMassTablePath->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbMassTablePath, 5, 0);
leMassTablePath = new QLineEdit(QString::fromStdString(massData),box);
leMassTablePath->setEnabled(false);
boxLayout->addWidget(leMassTablePath, 5, 1, 1, 3);
QLabel * lbQValue = new QLabel("Q-Value [MeV] ", box);
lbQValue->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbQValue, 6, 0);
leQValue = new QLineEdit(box);
leQValue->setEnabled(false);
boxLayout->addWidget(leQValue, 6, 1);
QLabel * lbGDRho = new QLabel("G.S. Rho [mm] ", box);
lbGDRho->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbGDRho, 6, 2);
leGSRho = new QLineEdit(box);
leGSRho->setEnabled(false);
boxLayout->addWidget(leGSRho, 6, 3);
QLabel * lbZoffset = new QLabel("Z-offset [mm] ", box);
lbZoffset->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbZoffset, 7, 0);
leZoffset = new QLineEdit(box);
leZoffset->setEnabled(false);
boxLayout->addWidget(leZoffset, 7, 1);
}
//============ histograms
hMulti = new Histogram1D("Multiplicity", "", 10, 0, 10, this);
layout->addWidget(hMulti, 0, 1);
// the "this" make the histogram a child of the SplitPole class. When SplitPole destory, all childs destory as well.
2023-08-14 11:26:52 -04:00
hPID = new Histogram2D("Split Pole PID", "Scin-L", "Anode-Font", 100, 0, 5000, 100, 0, 5000, this);
//layout is inheriatge from Analyzer
layout->addWidget(hPID, 1, 0, 2, 1);
2023-08-14 11:26:52 -04:00
h1 = new Histogram1D("Spectrum", "x", 300, 30, 70, this);
h1->SetColor(Qt::darkGreen);
h1->AddDataList("Test", Qt::red); // add another histogram in h1, Max Data List is 10
layout->addWidget(h1, 1, 1);
2023-08-14 11:26:52 -04:00
h1g = new Histogram1D("Spectrum (gated)", "x", 300, 30, 70, this);
layout->addWidget(h1g, 2, 1);
layout->setColumnStretch(0, 1);
layout->setColumnStretch(1, 1);
}
inline void SplitPole::UpdateHistograms(){
2023-08-28 15:02:56 -04:00
if( this->isVisible() == false ) return;
if( runAnalyzer->isChecked() == false ) return;
BuildEvents(); // call the event builder to build events
//============ Get events, and do analysis
long eventBuilt = evtbder->eventBuilt;
if( eventBuilt == 0 ) return;
//============ Get the cut list, if any
QList<QPolygonF> cutList = hPID->GetCutList();
const int nCut = cutList.count();
unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0};
unsigned int count[nCut]={0};
//============ Processing data and fill histograms
long eventIndex = evtbder->eventIndex;
long eventStart = eventIndex - eventBuilt + 1;
if(eventStart < 0 ) eventStart += MaxNEvent;
for( long i = eventStart ; i <= eventIndex; i ++ ){
std::vector<Hit> event = evtbder->events[i];
//printf("-------------- %ld\n", i);
hMulti->Fill((int) event.size());
//if( event.size() < 9 ) return;
if( event.size() == 0 ) return;
hit.Clear();
for( int k = 0; k < (int) event.size(); k++ ){
//event[k].Print();
2023-10-16 16:07:14 -04:00
if( event[k].ch == SPS::ChMap::ScinR ) {hit.eSR = event[k].energy; hit.tSR = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::ScinL ) {hit.eSL = event[k].energy; hit.tSL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dFR ) {hit.eFR = event[k].energy; hit.tFR = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dFL ) {hit.eFL = event[k].energy; hit.tFL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dBR ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dBL ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::Cathode ) {hit.eCath = event[k].energy; hit.tCath = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::AnodeF ) {hit.eAF = event[k].energy; hit.tAF = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::AnodeB ) {hit.eAB = event[k].energy; hit.tAB = event[k].timestamp;}
}
hit.CalData();
hPID->Fill(hit.eSL, hit.eSR); // x, y
h1->Fill(hit.eSL);
h1->Fill(hit.eSR, 1);
//check events inside any Graphical cut and extract the rate, using tSR only
for(int p = 0; p < cutList.count(); p++ ){
if( cutList[p].isEmpty() ) continue;
if( cutList[p].containsPoint(QPointF(hit.eSL, hit.eSR), Qt::OddEvenFill) ){
if( hit.tSR < tMin[p] ) tMin[p] = hit.tSR;
if( hit.tSR > tMax[p] ) tMax[p] = hit.tSR;
count[p] ++;
//printf(".... %d \n", count[p]);
if( p == 0 ) h1g->Fill(hit.eSR);
}
}
}
hPID->UpdatePlot();
h1->UpdatePlot();
hMulti->UpdatePlot();
h1g->UpdatePlot();
QList<QString> cutNameList = hPID->GetCutNameList();
for( int p = 0; p < cutList.count(); p ++){
if( cutList[p].isEmpty() ) continue;
double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec
double rate = count[p]*1.0/(dT);
//printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]);
//printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate);
influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate));
influx->WriteData(dataBaseName);
influx->ClearDataPointsBuffer();
}
}
2023-06-12 16:32:01 -04:00
#endif