#ifndef Target_h #define Target_h /********************************************* * This is online analyzer for PID, ANL * * Created by Khushi @ 2024-09-03 * * ******************************************/ #include "Analyser.h" class Target : public Analyzer{ public: Target(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){ SetUpdateTimeInSec(2.0); RedefineEventBuilder({0}); // only builder for the 0-th digitizer. tick2ns = digi[0]->GetTick2ns(); SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100. evtbder = GetEventBuilder(); evtbder->SetTimeWindow(500); //========== use the influx from the Analyzer influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/"); dataBaseName = "testing"; SetUpCanvas(); // see below }; void SetUpCanvas(); public slots: void UpdateHistograms(); private: MultiBuilder *evtbder; //Histogram2D * hPID; Histogram1D * hdE; // raw dE (ch=1): ch1 Histogram1D * hE; // raw E (ch=4) : ch4 Histogram1D * hdT; // raw dT (ch=7): ch7 Histogram1D * hTotE; // total energy (dE+E): ch1+ch4 Histogram1D * hTWin; // coincidence time window TWin: (t4-t1)*1e9 Histogram2D * hdEE; // dE versus E : ch1 versus ch4 Histogram2D * hdEtotE; // dE versus totE : ch1 versus (ch1+ch4) Histogram2D * hdEdT; // dE versus TOF: ch1 versus (t7-t1)*1e9 int tick2ns; float ch1, ch4, ch7; unsigned long long t1, t4, t7; }; inline void Target::SetUpCanvas(){ setGeometry(0, 0, 2000, 1000); //============ histograms //hPID = new Histogram2D("RAISOR", "E", "dE", 100, 0, 5000, 100, 0, 5000, this); //layout->addWidget(hPID, 2, 0); hdEE = new Histogram2D("dE vs E", "E[ch]", "dE[ch]", 500, -100, 10000, 500, -100, 10000, this); layout->addWidget(hdEE, 0, 0, 1, 2); hdE = new Histogram1D("raw dE (ch=1)", "dE [ch]", 300, 0, 8000, this); layout->addWidget(hdE, 0, 2); hdEdT = new Histogram2D("dE vs TOF", "TOF [ns]", "dE", 100, 0, 500, 100, 0, 4000, this); layout->addWidget(hdEdT, 1, 3); hE = new Histogram1D("raw E (ch=4)", "E [ch]", 300, 0, 10000, this); layout->addWidget(hE, 0, 3); hdEtotE = new Histogram2D("dE vs TotE", "TotE[ch]", "dE[ch]", 500, 0, 10000, 500, 0, 10000, this); layout->addWidget(hdEtotE, 1, 0, 1, 2); hdT = new Histogram1D("raw dT (ch=7)", "dT [ch]", 300, 0, 1000, this); layout->addWidget(hdT, 1, 2); hTotE = new Histogram1D("total energy (dE+E)", "TotE [ch]", 300, 0, 16000, this); layout->addWidget(hTotE, 0, 4); hTWin = new Histogram1D("coincidence time window", "TWin [ns]", 300, 0, 500, this); layout->addWidget(hTWin, 1, 4); } inline void Target::UpdateHistograms(){ if( this->isVisible() == false ) return; BuildEvents(false); // call the event builder to build events //============ Get events, and do analysis long eventBuilt = evtbder->eventBuilt; if( eventBuilt == 0 ) return; //============ Get the cut list, if any /* QList cutList = hPID->GetCutList(); const int nCut = cutList.count(); unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0}; unsigned int count[nCut]={0}; */ QList cutList1 = hdEE->GetCutList(); const int nCut1 = cutList1.count(); unsigned long long tMin1[nCut1] = {0xFFFFFFFFFFFFFFFF}, tMax1[nCut1] = {0}; unsigned int count1[nCut1]={0}; QList cutList2 = hdEtotE->GetCutList(); const int nCut2 = cutList2.count(); unsigned long long tMin2[nCut2] = {0xFFFFFFFFFFFFFFFF}, tMax2[nCut2] = {0}; unsigned int count2[nCut2]={0}; //============ Processing data and fill histograms long eventIndex = evtbder->eventIndex; long eventStart = eventIndex - eventBuilt + 1; if(eventStart < 0 ) eventStart += MaxNEvent; for( long i = eventStart ; i <= eventIndex; i ++ ){ std::vector event = evtbder->events[i]; //printf("-------------- %ld\n", i); if( event.size() == 0 ) return; for( int k = 0; k < (int) event.size(); k++ ){ //event[k].Print(); if( event[k].ch == 6 ) {ch1 = event[k].energy; t1 = event[k].timestamp;} // Reads channel 6 of the digitizer corresponding to dE if( event[k].ch == 7 ) {ch4 = event[k].energy; t4 = event[k].timestamp;} // Reads channel 7 of the digitizer corresponding to E if( event[k].ch == 1 ) {ch7 = event[k].energy; t7 = event[k].timestamp;} } // printf("(E, dE) = (%f, %f)\n", E, dE); //hPID->Fill(ch4 , ch1); // x, y //etotal = ch1*0.25*0.25 + ch4 hdE->Fill(ch1); hE->Fill(ch4); hdT->Fill(ch7); hTotE->Fill(ch1*0.25*0.25 + ch4); hdEE->Fill(ch4,ch1); hdEtotE->Fill(ch1*0.25*0.25 + ch4,ch1); hdEdT->Fill((t7-t1)*1e9,ch1); hTWin->Fill((t4-t1)*1e9); //check events inside any Graphical cut and extract the rate /* for(int p = 0; p < cutList.count(); p++ ){ if( cutList[p].isEmpty() ) continue; if( cutList[p].containsPoint(QPointF(ch4, ch1), Qt::OddEvenFill) ){ if( t1 < tMin[p] ) tMin[p] = t1; if( t1 > tMax[p] ) tMax[p] = t1; count[p] ++; //printf(".... %d \n", count[p]); } } */ for(int p = 0; p < cutList1.count(); p++ ){ if( cutList1[p].isEmpty() ) continue; if( cutList1[p].containsPoint(QPointF(ch4, ch1), Qt::OddEvenFill) ){ if( t1 < tMin1[p] ) tMin1[p] = t1; if( t1 > tMax1[p] ) tMax1[p] = t1; count1[p] ++; //printf("hdEE.... %d \n", count1[p]); } } for(int p = 0; p < cutList2.count(); p++ ){ if( cutList2[p].isEmpty() ) continue; if( cutList2[p].containsPoint(QPointF(ch1+ch4,ch1), Qt::OddEvenFill) ){ if( t1 < tMin2[p] ) tMin2[p] = t1; if( t1 > tMax2[p] ) tMax2[p] = t1; count2[p] ++; //printf("hdEtotE.... %d \n", count2[p]); } } } for(int p = 0; p < cutList2.count(); p++ ){ printf("hdEE.... %d %d \n", p, count1[p]); } //hPID->UpdatePlot(); hdE->UpdatePlot(); hE->UpdatePlot(); hdT->UpdatePlot(); hTotE->UpdatePlot(); hdEE->UpdatePlot(); hdEtotE->UpdatePlot(); hdEdT->UpdatePlot(); hTWin->UpdatePlot(); /* //========== output to Influx QList cutNameList = hPID->GetCutNameList(); for( int p = 0; p < cutList.count(); p ++){ if( cutList[p].isEmpty() ) continue; double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec double rate = count[p]*1.0/(dT); //printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]); //printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate); influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate)); influx->WriteData(dataBaseName); influx->ClearDataPointsBuffer(); } */ } #endif