#ifndef RASIOR2_h #define RASIOR2_h /********************************************* * This is online analyzer for RASIOR, ANL * * Created by Ryan @ 2023-10-16 * * ******************************************/ #include "Analyser.h" class RAISOR2 : public Analyzer{ public: RAISOR2(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){ SetUpdateTimeInSec(4.0); RedefineEventBuilder({0}); // only builder for the 0-th digitizer. tick2ns = digi[0]->GetTick2ns(); SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100. evtbder = GetEventBuilder(); evtbder->SetTimeWindow(500); //========== use the influx from the Analyzer influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/"); dataBaseName = "testing"; SetUpCanvas(); // see below }; void SetUpCanvas(); public slots: void UpdateHistograms(); private: MultiBuilder *evtbder; Histogram2D * hPID; Histogram2D * hXX; // X1 versus X2 : e[1] versus e[0] Histogram2D * hYY; // Y1 versus Y2 : e[3] versus e[2] Histogram1D * hXE; // X energy: e[0]+e[1] Histogram1D * hYE; // Y energy: e[2]+e[3] Histogram2D * hXYE; // 2D energy plot: e[2]+e[3] versus e[0]+e[1] Histogram1D * hX; // X position:((e[0]-e[1])/(e[0]+e[1])) Histogram1D * hY; // Y position:((e[2]-e[3])/(e[2]+e[3])) Histogram2D * hXY; // 2D position plot: ((e[2]-e[3])/(e[2]+e[3])) versus ((e[0]-e[1])/(e[0]+e[1])) Histogram2D * hXPE; // X position versus X energy: ((e[0]-e[1])/(e[0]+e[1])) versus (e[0]+e[1]) Histogram2D * hYPE; // Y position versus Y energy: ((e[2]-e[3])/(e[2]+e[3])) versus (e[2]+e[3]) //TH1F * hX1, * hX2, * hY1, *hY2; Histogram2D * hXEdE1; //X energy versus dE signal 1 Histogram2D * hYEdE1; //Y energy versus dE signal 1 Histogram2D * hXEdE2; //X energy versus dE signal 2 Histogram2D * hYEdE2; //Y energy versus dE signal 2 Histogram1D * hX1, * hX2, * hY1, * hY2; int chX1, chX2; // yellow, Red int chY1, chY2; // Blue, White int tick2ns; float dE, E; unsigned long long dE_t, E_t; float e0, e1, e2, e3, dE1, dE2; unsigned long long t0, t1, t2, t3, dE1_t, dE2_t; //unsigned Int_t * energy; //unsigned long energy; /* chX1 = 0; // left chX2 = 1; // right chY1 = 2; // top chY2 = 3; // bottom */ }; inline void RAISOR2::SetUpCanvas(){ setGeometry(0, 0, 1500, 2000); //============ histograms hPID = new Histogram2D("RAISOR2", "E", "dE", 100, 0, 11000, 100, 0, 11000, this); layout->addWidget(hPID, 0, 0); hXY = new Histogram2D("2D position plot", "X position", "Y position", 200, -1, 1, 200, -1, 1, this); layout->addWidget(hXY, 0, 1); hXX = new Histogram2D("X1 versus X2", "X2", "X1", 100, 0, 8000, 100, 0, 8000, this); layout->addWidget(hXX, 0, 2); hYY = new Histogram2D("Y1 versus Y2", "Y2", "Y1", 100, 0, 8000, 100, 0, 8000, this); layout->addWidget(hYY, 0, 3); hXE = new Histogram1D("X energy", "Ex", 300, 0, 8000, this); layout->addWidget(hXE, 1, 0); hYE = new Histogram1D("Y energy", "Ey", 300, 0, 8000, this); layout->addWidget(hYE, 1, 1); hX = new Histogram1D("X position", "X", 300, -1, 1, this); layout->addWidget(hX, 1, 2); hY = new Histogram1D("Y position", "Y", 300, -1, 1, this); layout->addWidget(hY, 1, 3); hXPE = new Histogram2D("X energy versus X position", "X position", "X energy", 100, -1, 1, 100, 0, 8000, this); layout->addWidget(hXPE, 0, 4); hYPE = new Histogram2D("Y energy versus Y position", "Y position", "Y energy", 100, -1, 1, 100, 0, 8000, this); layout->addWidget(hYPE, 1, 4); hXEdE1 = new Histogram2D("X energy versus dE signal 1", "Ex", "dE signal 1", 100, 0, 8000, 100, 0, 8000, this); layout->addWidget(hXEdE1, 2, 0); hYEdE1 = new Histogram2D("Y energy versus dE signal 1", "Ey", "dE signal 1", 100, 0, 8000, 100, 0, 8000, this); layout->addWidget(hYEdE1, 2, 1); hXEdE2 = new Histogram2D("X energy versus dE signal 2", "Ex", "dE signal 2", 100, 0, 8000, 100, 0, 8000, this); layout->addWidget(hXEdE2, 2, 2); hYEdE2 = new Histogram2D("Y energy versus dE signal 2", "Ey", "dE signal 2", 100, 0, 8000, 100, 0, 8000, this); layout->addWidget(hYEdE2, 2, 3); hXYE = new Histogram2D("2D energy plot", "Ex", "Ey", 100, 0, 8000, 100, 0, 8000, this); layout->addWidget(hXYE, 2, 4); } inline void RAISOR2::UpdateHistograms(){ if( this->isVisible() == false ) return; BuildEvents(false); // call the event builder to build events //============ Get events, and do analysis long eventBuilt = evtbder->eventBuilt; if( eventBuilt == 0 ) return; //============ Get the cut list, if any QList cutList = hPID->GetCutList(); const int nCut = cutList.count(); unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0}; unsigned int count[nCut]={0}; QList cutList1 = hXEdE1->GetCutList(); const int nCut1 = cutList1.count(); unsigned long long tMin1[nCut1] = {0xFFFFFFFFFFFFFFFF}, tMax1[nCut1] = {0}; unsigned int count1[nCut1]={0}; QList cutList2 = hYEdE1->GetCutList(); const int nCut2 = cutList2.count(); unsigned long long tMin2[nCut2] = {0xFFFFFFFFFFFFFFFF}, tMax2[nCut2] = {0}; unsigned int count2[nCut2]={0}; QList cutList3 = hXY->GetCutList(); const int nCut3 = cutList3.count(); unsigned long long tMin3[nCut3] = {0xFFFFFFFFFFFFFFFF}, tMax3[nCut3] = {0}; unsigned int count3[nCut3]={0}; //============ Processing data and fill histograms long eventIndex = evtbder->eventIndex; long eventStart = eventIndex - eventBuilt + 1; if(eventStart < 0 ) eventStart += MaxNEvent; for( long i = eventStart ; i <= eventIndex; i ++ ){ std::vector event = evtbder->events[i]; //printf("-------------- %ld\n", i); if( event.size() == 0 ) return; for( int k = 0; k < (int) event.size(); k++ ){ //event[k].Print(); if( event[k].ch == 14 ) {dE = event[k].energy; dE_t = event[k].timestamp;} // Surface Barrier dE detector if( event[k].ch == 15 ) {E = event[k].energy; E_t = event[k].timestamp;} // Surface Barrier E detector if( event[k].ch == 10 ) {e0 = event[k].energy; t0 = event[k].timestamp;} // if( event[k].ch == 11 ) {e1= event[k].energy; t1 = event[k].timestamp;} // The 4 output signals from the if( event[k].ch == 12 ) {e2 = event[k].energy; t2 = event[k].timestamp;} // position sensitive E detector if( event[k].ch == 13 ) {e3= event[k].energy; t3 = event[k].timestamp;} // if( event[k].ch == 14 ) {dE1 = event[k].energy; dE1_t = event[k].timestamp;} // The 2 output signals from the if( event[k].ch == 15 ) {dE2= event[k].energy; dE2_t = event[k].timestamp;} // square dE detector } // printf("(E, dE) = (%f, %f)\n", E, dE); hPID->Fill(E + RandomGauss(0, 100), dE+ RandomGauss(0, 100)); // x, y hXX->Fill(e1 , e0); // hYY->Fill(e3, e2); hXY->Fill(((e0-e1)/(e0+e1)),((e3-e2)/(e2+e3))); hXE->Fill(e0+e1); hYE->Fill(e2+e3); hX->Fill(((e0-e1)/(e0+e1))); // X position hY->Fill(((e3-e2)/(e2+e3))); // Y position hXPE->Fill(((e0-e1)/(e0+e1)),(e0+e1)); hYPE->Fill(((e3-e2)/(e2+e3)),(e2+e3)); hXEdE1->Fill((e0+e1),dE1); hYEdE1->Fill(e2+e3,dE1); hXEdE2->Fill(e0+e1,dE2); hYEdE2->Fill(e2+e3,dE2); hXYE->Fill(e0+e1,e2+e3); //check events inside any Graphical cut and extract the rate for(int p = 0; p < cutList.count(); p++ ){ if( cutList[p].isEmpty() ) continue; if( cutList[p].containsPoint(QPointF(E, dE), Qt::OddEvenFill) ){ if( dE_t < tMin[p] ) tMin[p] = dE_t; if( dE_t > tMax[p] ) tMax[p] = dE_t; count[p] ++; //printf(".... %d \n", count[p]); } } for(int p = 0; p < cutList1.count(); p++ ){ if( cutList1[p].isEmpty() ) continue; if( cutList1[p].containsPoint(QPointF((e0+e1), dE1), Qt::OddEvenFill) ){ if( dE1_t < tMin1[p] ) tMin1[p] = dE1_t; if( dE1_t > tMax1[p] ) tMax1[p] = dE1_t; count1[p] ++; //printf("hXX.... %d \n", count1[p]); } } for(int p = 0; p < cutList2.count(); p++ ){ if( cutList2[p].isEmpty() ) continue; if( cutList2[p].containsPoint(QPointF((e2+e3), dE1), Qt::OddEvenFill) ){ if( dE1_t < tMin2[p] ) tMin2[p] = dE1_t; if( dE1_t > tMax2[p] ) tMax2[p] = dE1_t; count2[p] ++; //printf("hXX.... %d \n", count2[p]); } } for(int p = 0; p < cutList3.count(); p++ ){ if( cutList3[p].isEmpty() ) continue; if( cutList3[p].containsPoint(QPointF(((e0-e1)/(e0+e1)), ((e2-e3)/(e2+e3))), Qt::OddEvenFill) ){ if( ((t2-t3)/(t2+t3)) < tMin3[p] ) tMin3[p] = ((t2-t3)/(t2+t3)); if( ((t2-t3)/(t2+t3)) > tMax3[p] ) tMax3[p] = ((t2-t3)/(t2+t3)); count3[p] ++; //printf("hXX.... %d \n", count3[p]); } } } hPID->UpdatePlot(); hXY->UpdatePlot(); hXX->UpdatePlot(); hYY->UpdatePlot(); hXE->UpdatePlot(); // X Energy hYE->UpdatePlot(); // Y Energy hX->UpdatePlot(); // X position hY->UpdatePlot(); // Y position hXPE->UpdatePlot(); hYPE->UpdatePlot(); hXEdE1->UpdatePlot(); hYEdE1->UpdatePlot(); hXEdE2->UpdatePlot(); hYEdE2->UpdatePlot(); hXYE->UpdatePlot(); //========== output to Influx QList cutNameList = hPID->GetCutNameList(); for( int p = 0; p < cutList.count(); p ++){ if( cutList[p].isEmpty() ) continue; double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec double rate = count[p]*1.0/(dT); //printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]); //printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate); influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate)); influx->WriteData(dataBaseName); influx->ClearDataPointsBuffer(); } } #endif