#ifndef MCP_h #define MCP_h /********************************************* * This is online analyzer for MCP, ANL * * Created by Khushi @ 2024-03-27 * * ******************************************/ #include "Analyser.h" #include #include "math.h" #include //#define M_PI 3.14159265 class MCP : public Analyzer{ public: MCP(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){ SetUpdateTimeInSec(2.0); RedefineEventBuilder({0}); // only builder for the 0-th digitizer. tick2ns = digi[0]->GetTick2ns(); SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100. evtbder = GetEventBuilder(); evtbder->SetTimeWindow(500); //ns SetDatabase("https://localhost:8086", "testing", "zKhzKk4Yhf1l9QU-yE2GsIZ1RazqUgoW3NlF8LJqq_xDMwatOJwg1sKrjgq36uLEsQf8Fmn4sJALP7Kkilk14A=="); SetUpCanvas(); // see below }; void SetUpCanvas(); public slots: void UpdateHistograms(); private: MultiBuilder *evtbder; Histogram2D * hPID; //Histogram2D * hXX; // X1 versus X2 : e[1] versus e[0] //Histogram2D * hYY; // Y1 versus Y2 : e[3] versus e[2] Histogram1D * hX; // X position:((e[0]+e[1])/(e[0]+e[1]+e[2]+e[3])) Histogram1D * hY; // Y position:((e[2]+e[3])/((e[0]+e[1]+e[2]+e[3]))) Histogram1D * hXr; // X position angle rotated Histogram1D * hYr; // Y position angle rotated Histogram2D * hXY; // 2D position plot: ((e[2]+e[3])/((e[0]+e[1]+e[2]+e[3]))) versus ((e[0]+e[1])/(e[0]+e[1]+e[2]+e[3])) Histogram2D * hXYr; Histogram1D * he0; // e0: signal 0 Histogram1D * he1; // e1: signal 1 Histogram1D * he2; // e2: signal 2 Histogram1D * he3; // e3: signal 3 Histogram1D * ht; // time window int tick2ns; float dE, E; unsigned long long dE_t, E_t; float e0, e1, e2, e3; unsigned long long t0, t1, t2, t3; }; inline void MCP::SetUpCanvas(){ setGeometry(0, 0, 2000, 800); //============ histograms hPID = new Histogram2D("MCP", "E", "dE", 100, 0, 5000, 100, 0, 5000, this); layout->addWidget(hPID, 0, 0); hXYr = new Histogram2D("2D rot posi", "Xr position", "Yr position", 200, -0.5, 0.5, 200, -0.5, 0.5, this); layout->addWidget(hXYr, 0, 1); hXY = new Histogram2D("2D position plot", "X position", "Y position", 500, 0, 1, 500, 0, 1, this); layout->addWidget(hXY, 0, 2); ht = new Histogram1D("Time Window", "t", 50, 0, 500, this); layout->addWidget(ht, 0, 3); hX = new Histogram1D("X position", "X", 250, 0, 1, this); layout->addWidget(hX, 2, 0); hY = new Histogram1D("Y position", "Y", 250, 0, 1, this); layout->addWidget(hY, 2, 1); hXr = new Histogram1D("Angle rot X posi", "Xr", 250, -0.5, 0.5, this); layout->addWidget(hXr, 2, 2); hYr = new Histogram1D("Angle rot Y posi", "Yr", 250, -0.5, 0.5, this); layout->addWidget(hYr, 2, 3); // UNCOMMENT FOLLOWING 8 LINES TO SEE INDIVIDUAL SIGNALS he0 = new Histogram1D("Signal 0", "e0", 200, 0, 8000, this); layout->addWidget(he0, 1, 0); he1 = new Histogram1D("Signal 1", "e1", 200, 0, 8000, this); layout->addWidget(he1, 1, 1); he2 = new Histogram1D("Signal 2", "e2", 200, 0, 8000, this); layout->addWidget(he2, 1, 2); he3 = new Histogram1D("Signal 3", "e3", 200, 0, 8000, this); layout->addWidget(he3, 1, 3); // } inline void MCP::UpdateHistograms(){ if( this->isVisible() == false ) return; BuildEvents(false); // call the event builder to build events //============ Get events, and do analysis long eventBuilt = evtbder->eventBuilt; if( eventBuilt == 0 ) return; //============ Get the cut list, if any QList cutList = hPID->GetCutList(); const int nCut = cutList.count(); unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0}; unsigned int count[nCut]={0}; //============ Processing data and fill histograms long eventIndex = evtbder->eventIndex; long eventStart = eventIndex - eventBuilt + 1; if(eventStart < 0 ) eventStart += MaxNEvent; for( long i = eventStart ; i <= eventIndex; i ++ ){ std::vector event = evtbder->events[i]; //printf("-------------- %ld\n", i); if( event.size() == 0 ) return; //if( event.size() < 2 ) return; cout<< "event size " << event.size() <10 && e1>10 && e2>10 && e3>10) { float_t rotation_angle = 31.; double_t Xr = (((e1+e2)/(e0+e1+e2+e3))-0.51)*cos(-rotation_angle*M_PI/180)-(((e2+e3)/(e0+e1+e2+e3))-0.51)*sin(-rotation_angle*M_PI/180); double_t Yr = (((e1+e2)/(e0+e1+e2+e3))-0.51)*sin(-rotation_angle*M_PI/180)+(((e2+e3)/(e0+e1+e2+e3))-0.51)*cos(-rotation_angle*M_PI/180); hPID->Fill(E + RandomGauss(0, 100), dE+ RandomGauss(0, 100)); // x, y hXY->Fill(((e1+e2)/(e0+e1+e2+e3)),((e2+e3)/(e0+e1+e2+e3))); hXYr->Fill(Xr,Yr); hX->Fill(((e1+e2)/(e0+e1+e2+e3))); hY->Fill(((e2+e3)/(e0+e1+e2+e3))); hXr->Fill(Xr); hYr->Fill(Yr); } he0->Fill(e0); he1->Fill(e1); he2->Fill(e2); he3->Fill(e3); ht->Fill(max(max(t0,t1),max(t2,t3))-min(min(t0,t1),min(t2,t3))); // cout << "t0: " << t0 << endl; // cout << "t1: " << t1 << endl; // cout << "t2: " << t2 << endl; // cout << "t3: " << t3 << endl; // cout << "time window " << max(max(t0,t1),max(t2,t3))-min(min(t0,t1),min(t2,t3)) < tMax[p] ) tMax[p] = dE_t; count[p] ++; //printf(".... %d \n", count[p]); } } } hPID->UpdatePlot(); //hXX->UpdatePlot();// //hYY->UpdatePlot(); hXY->UpdatePlot(); hXYr->UpdatePlot(); hX->UpdatePlot(); hY->UpdatePlot(); hXr->UpdatePlot(); hYr->UpdatePlot(); he0->UpdatePlot(); he1->UpdatePlot(); he2->UpdatePlot(); he3->UpdatePlot(); ht->UpdatePlot(); //========== output to Influx QList cutNameList = hPID->GetCutNameList(); for( int p = 0; p < cutList.count(); p ++){ if( cutList[p].isEmpty() ) continue; double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec double rate = count[p]*1.0/(dT); //printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]); //printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate); influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate)); influx->WriteData(dataBaseName.toStdString()); influx->ClearDataPointsBuffer(); } } #endif