#ifndef SPLITPOLEANLAYZER_H #define SPLITPOLEANLAYZER_H /********************************************* * This is online analyzer for Split-Pole at FSU * * It is a template for other analyzer. * * Any new analyzer add to added to FSUDAQ.cpp * 1) add include header * 2) in OpenAnalyzer(), change the new * * add the source file in FSUDAQ_Qt6.pro then compile * >qmake6 FSUDAQ_Qt6.pro * >make * * ******************************************/ #include "SplitPoleHit.h" #include "Analyser.h" //^=========================================== //^=========================================== class SplitPole : public Analyzer{ Q_OBJECT public: SplitPole(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){ SetUpdateTimeInSec(1.0); RedefineEventBuilder({0}); // only build for the 0-th digitizer, otherwise, it will build event accross all digitizers tick2ns = digi[0]->GetTick2ns(); SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100. evtbder = GetEventBuilder(); evtbder->SetTimeWindow(1000); //========== use the influx from the Analyzer influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/"); dataBaseName = "testing"; SetUpCanvas(); leTarget->setText("12C"); leBeam->setText("d"); leRecoil->setText("p"); sbBfield->setValue(0.76); sbAngle->setValue(20); sbEnergy->setValue(16); hit.CalConstants(leTarget->text().toStdString(), leBeam->text().toStdString(), leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value()); hit.CalZoffset(sbBfield->value()); FillConstants(); hit.ClearData(); } /// ~SplitPole(); // comment out = defalt destructor void SetUpCanvas(); void FillConstants(); public slots: void UpdateHistograms(); private: MultiBuilder *evtbder; // declaie histograms Histogram2D * hPID; Histogram1D * h1; Histogram1D * h1g; Histogram1D * hMulti; int tick2ns; SplitPoleHit hit; RSpinBox * sbBfield; QLineEdit * leTarget; QLineEdit * leBeam; QLineEdit * leRecoil; RSpinBox * sbEnergy; RSpinBox * sbAngle; RSpinBox * sbEventWin; QCheckBox * chkRunAnalyzer; QLineEdit * leMassTablePath; QLineEdit * leQValue; QLineEdit * leGSRho; QLineEdit * leZoffset; RSpinBox * sbRhoOffset; RSpinBox * sbRhoScale; }; inline void SplitPole::FillConstants(){ leQValue->setText(QString::number(hit.GetQ0())); leGSRho->setText(QString::number(hit.GetRho0()*1000)); leZoffset->setText(QString::number(hit.GetZoffset())); } inline void SplitPole::SetUpCanvas(){ setGeometry(0, 0, 1600, 1000); {//^====== magnet and reaction setting QGroupBox * box = new QGroupBox("Configuration", this); layout->addWidget(box, 0, 0); QGridLayout * boxLayout = new QGridLayout(box); boxLayout->setAlignment(Qt::AlignTop | Qt::AlignLeft); box->setLayout(boxLayout); QLabel * lbBfield = new QLabel("B-field [T] ", box); lbBfield->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbBfield, 0, 2); sbBfield = new RSpinBox(box); sbBfield->setDecimals(3); sbBfield->setSingleStep(0.05); boxLayout->addWidget(sbBfield, 0, 3); QLabel * lbTarget = new QLabel("Target ", box); lbTarget->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbTarget, 0, 0); leTarget = new QLineEdit(box); boxLayout->addWidget(leTarget, 0, 1); QLabel * lbBeam = new QLabel("Beam ", box); lbBeam->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbBeam, 1, 0); leBeam = new QLineEdit(box); boxLayout->addWidget(leBeam, 1, 1); QLabel * lbRecoil = new QLabel("Recoil ", box); lbRecoil->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbRecoil, 2, 0); leRecoil = new QLineEdit(box); boxLayout->addWidget(leRecoil, 2, 1); QLabel * lbEnergy = new QLabel("Beam Energy [MeV] ", box); lbEnergy->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbEnergy, 1, 2); sbEnergy = new RSpinBox(box); sbEnergy->setDecimals(3); sbEnergy->setSingleStep(1.0); boxLayout->addWidget(sbEnergy, 1, 3); QLabel * lbAngle = new QLabel("SPS Angle [Deg] ", box); lbAngle->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbAngle, 2, 2); sbAngle = new RSpinBox(box); sbAngle->setDecimals(3); sbAngle->setSingleStep(1.0); boxLayout->addWidget(sbAngle, 2, 3); boxLayout->setColumnStretch(0, 1); boxLayout->setColumnStretch(1, 2); boxLayout->setColumnStretch(2, 1); boxLayout->setColumnStretch(3, 2); connect(leTarget, &QLineEdit::returnPressed, this, [=](){ hit.CalConstants(leTarget->text().toStdString(), leBeam->text().toStdString(), leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value() ); hit.CalZoffset(sbBfield->value()); FillConstants(); }); connect(leBeam, &QLineEdit::returnPressed, this, [=](){ hit.CalConstants(leTarget->text().toStdString(), leBeam->text().toStdString(), leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value()); hit.CalZoffset(sbBfield->value()); FillConstants(); }); connect(leRecoil, &QLineEdit::returnPressed, this, [=](){ hit.CalConstants(leTarget->text().toStdString(), leBeam->text().toStdString(), leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value()); hit.CalZoffset(sbBfield->value()); FillConstants(); }); connect(sbBfield, &RSpinBox::returnPressed, this, [=](){ hit.CalConstants(leTarget->text().toStdString(), leBeam->text().toStdString(), leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value()); hit.CalZoffset(sbBfield->value()); FillConstants(); }); connect(sbAngle, &RSpinBox::returnPressed, this, [=](){ hit.CalConstants(leTarget->text().toStdString(), leBeam->text().toStdString(), leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value()); hit.CalZoffset(sbBfield->value()); FillConstants(); }); connect(sbEnergy, &RSpinBox::returnPressed, this, [=](){ hit.CalConstants(leTarget->text().toStdString(), leBeam->text().toStdString(), leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value()); hit.CalZoffset(sbBfield->value()); FillConstants(); }); QLabel * lbEventWindow = new QLabel("Event Window [ns] ", box); lbEventWindow->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbEventWindow, 4, 0); sbEventWin = new RSpinBox(this); sbEventWin->setDecimals(0); sbEventWin->setSingleStep(100); sbEventWin->setMaximum(1000000); boxLayout->addWidget(sbEventWin, 4, 1); sbEventWin->setValue(1000); connect(sbEventWin, &RSpinBox::returnPressed, this, [=](){ evtbder->SetTimeWindow(sbEventWin->value()); }); chkRunAnalyzer = new QCheckBox("Run Analyzer", this); boxLayout->addWidget(chkRunAnalyzer, 4, 3); connect(chkRunAnalyzer, &QCheckBox::stateChanged, this, [=](int state){ sbBfield->setEnabled(state != Qt::Checked); leTarget->setEnabled(state != Qt::Checked); leBeam->setEnabled(state != Qt::Checked); leRecoil->setEnabled(state != Qt::Checked); sbEnergy->setEnabled(state != Qt::Checked); sbAngle->setEnabled(state != Qt::Checked); sbEventWin->setEnabled(state != Qt::Checked); }); QFrame *separator = new QFrame(box); separator->setFrameShape(QFrame::HLine); separator->setFrameShadow(QFrame::Sunken); boxLayout->addWidget(separator, 5, 0, 1, 4); QLabel * lbMassTablePath = new QLabel("Mass Table Path : ", box); lbMassTablePath->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbMassTablePath, 6, 0); leMassTablePath = new QLineEdit(QString::fromStdString(massData),box); leMassTablePath->setReadOnly(true); boxLayout->addWidget(leMassTablePath, 6, 1, 1, 3); QLabel * lbQValue = new QLabel("Q-Value [MeV] ", box); lbQValue->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbQValue, 7, 0); leQValue = new QLineEdit(box); leQValue->setReadOnly(true); boxLayout->addWidget(leQValue, 7, 1); QLabel * lbGDRho = new QLabel("G.S. Rho [mm] ", box); lbGDRho->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbGDRho, 7, 2); leGSRho = new QLineEdit(box); leGSRho->setReadOnly(true); boxLayout->addWidget(leGSRho, 7, 3); QLabel * lbZoffset = new QLabel("Z-offset [mm] ", box); lbZoffset->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbZoffset, 8, 0); leZoffset = new QLineEdit(box); leZoffset->setReadOnly(true); boxLayout->addWidget(leZoffset, 8, 1); QFrame *separator1 = new QFrame(box); separator1->setFrameShape(QFrame::HLine); separator1->setFrameShadow(QFrame::Sunken); boxLayout->addWidget(separator1, 9, 0, 1, 4); QLabel * lbRhoOffset = new QLabel("Rho-offset [mm] ", box); lbRhoOffset->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbRhoOffset, 10, 0); sbRhoOffset = new RSpinBox(box); sbRhoOffset->setDecimals(2); sbRhoOffset->setSingleStep(1); sbRhoOffset->setValue(0); boxLayout->addWidget(sbRhoOffset, 10, 1); QLabel * lbRhoScale = new QLabel("Rho-Scaling ", box); lbRhoScale->setAlignment(Qt::AlignRight | Qt::AlignCenter); boxLayout->addWidget(lbRhoScale, 10, 2); sbRhoScale = new RSpinBox(box); sbRhoScale->setDecimals(2); sbRhoScale->setSingleStep(0.01); sbRhoScale->setMinimum(0.5); sbRhoScale->setMaximum(1.5); sbRhoScale->setValue(1.0); boxLayout->addWidget(sbRhoScale, 10, 3); QFrame *separator2 = new QFrame(box); separator2->setFrameShape(QFrame::HLine); separator2->setFrameShadow(QFrame::Sunken); boxLayout->addWidget(separator2, 11, 0, 1, 4); QString chMapStr = "ScinR = " + QString::number(SPS::ChMap::ScinR); chMapStr += ", ScinL = " + QString::number(SPS::ChMap::ScinL); chMapStr += ", dFR = " + QString::number(SPS::ChMap::dFR); chMapStr += ", dFL = " + QString::number(SPS::ChMap::dFL); chMapStr += ", dBR = " + QString::number(SPS::ChMap::dBR); chMapStr += ", dBL = " + QString::number(SPS::ChMap::dBL); chMapStr += ", Cathode = " + QString::number(SPS::ChMap::Cathode); chMapStr += ", AnodeF = " + QString::number(SPS::ChMap::AnodeF); chMapStr += ", AnodeB = " + QString::number(SPS::ChMap::AnodeB); QLabel * chMapLabel = new QLabel(chMapStr, box); boxLayout->addWidget(chMapLabel, 12, 0, 1, 4); } //============ histograms hMulti = new Histogram1D("Multiplicity", "", 10, 0, 10, this); layout->addWidget(hMulti, 0, 1); // the "this" make the histogram a child of the SplitPole class. When SplitPole destory, all childs destory as well. hPID = new Histogram2D("Split Pole PID", "Scin-L", "Anode-Font", 100, 0, 5000, 100, 0, 5000, this); //layout is inheriatge from Analyzer layout->addWidget(hPID, 1, 0, 2, 1); h1 = new Histogram1D("Spectrum", "x", 300, 30, 70, this); h1->SetColor(Qt::darkGreen); //h1->AddDataList("Test", Qt::red); // add another histogram in h1, Max Data List is 10 layout->addWidget(h1, 1, 1); h1g = new Histogram1D("Spectrum (PID gated)", "Ex", 300, -2, 10, this); layout->addWidget(h1g, 2, 1); layout->setColumnStretch(0, 1); layout->setColumnStretch(1, 1); } inline void SplitPole::UpdateHistograms(){ if( this->isVisible() == false ) return; if( chkRunAnalyzer->isChecked() == false ) return; BuildEvents(); // call the event builder to build events //============ Get events, and do analysis long eventBuilt = evtbder->eventBuilt; if( eventBuilt == 0 ) return; //============ Get the cut list, if any QList cutList = hPID->GetCutList(); const int nCut = cutList.count(); unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0}; unsigned int count[nCut]={0}; //============ Processing data and fill histograms long eventIndex = evtbder->eventIndex; long eventStart = eventIndex - eventBuilt + 1; if(eventStart < 0 ) eventStart += MaxNEvent; for( long i = eventStart ; i <= eventIndex; i ++ ){ std::vector event = evtbder->events[i]; //printf("-------------- %ld\n", i); hMulti->Fill((int) event.size()); //if( event.size() < 9 ) return; if( event.size() == 0 ) return; hit.ClearData(); for( int k = 0; k < (int) event.size(); k++ ){ //event[k].Print(); if( event[k].ch == SPS::ChMap::ScinR ) {hit.eSR = event[k].energy; hit.tSR = event[k].timestamp;} if( event[k].ch == SPS::ChMap::ScinL ) {hit.eSL = event[k].energy; hit.tSL = event[k].timestamp;} if( event[k].ch == SPS::ChMap::dFR ) {hit.eFR = event[k].energy; hit.tFR = event[k].timestamp;} if( event[k].ch == SPS::ChMap::dFL ) {hit.eFL = event[k].energy; hit.tFL = event[k].timestamp;} if( event[k].ch == SPS::ChMap::dBR ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;} if( event[k].ch == SPS::ChMap::dBL ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;} if( event[k].ch == SPS::ChMap::Cathode ) {hit.eCath = event[k].energy; hit.tCath = event[k].timestamp;} if( event[k].ch == SPS::ChMap::AnodeF ) {hit.eAF = event[k].energy; hit.tAF = event[k].timestamp;} if( event[k].ch == SPS::ChMap::AnodeB ) {hit.eAB = event[k].energy; hit.tAB = event[k].timestamp;} } hit.CalData(); double pidX = hit.eSL; unsigned long long tPidX = hit.tSL; double pidY = hit.eAF; hPID->Fill(pidX, pidY); // x, y h1->Fill(hit.xAvg); //h1->Fill(hit.eSR, 1); //check events inside any Graphical cut and extract the rate, using tSR only for(int p = 0; p < cutList.count(); p++ ){ if( cutList[p].isEmpty() ) continue; if( cutList[p].containsPoint(QPointF(pidX, pidY), Qt::OddEvenFill) ){ if( tPidX < tMin[p] ) tMin[p] = tPidX; if( tPidX > tMax[p] ) tMax[p] = tPidX; count[p] ++; //printf(".... %d \n", count[p]); if( p == 0 ) { double xAvg = hit.xAvg * 10; double xAvgC = xAvg * sbRhoScale->value() + sbRhoOffset->value(); h1g->Fill(hit.Rho2Ex(xAvgC/1000.)); } } } } hPID->UpdatePlot(); h1->UpdatePlot(); hMulti->UpdatePlot(); h1g->UpdatePlot(); QList cutNameList = hPID->GetCutNameList(); for( int p = 0; p < cutList.count(); p ++){ if( cutList[p].isEmpty() ) continue; double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec double rate = count[p]*1.0/(dT); //printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]); //printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate); influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate)); influx->WriteData(dataBaseName); influx->ClearDataPointsBuffer(); } } #endif