#ifndef MCP_h #define MCP_h /********************************************* * This is online analyzer for MCP, ANL * * Created by Khushi @ 2024-03-27 * * ******************************************/ #include "Analyser.h" class MCP : public Analyzer{ public: MCP(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){ SetUpdateTimeInSec(1.0); RedefineEventBuilder({0}); // only builder for the 0-th digitizer. tick2ns = digi[0]->GetTick2ns(); SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100. evtbder = GetEventBuilder(); evtbder->SetTimeWindow(500); //========== use the influx from the Analyzer influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/"); dataBaseName = "testing"; SetUpCanvas(); // see below }; void SetUpCanvas(); public slots: void UpdateHistograms(); private: MultiBuilder *evtbder; Histogram2D * hPID; Histogram2D * hXX; // X1 versus X2 : e[1] versus e[0] Histogram2D * hYY; // Y1 versus Y2 : e[3] versus e[2] Histogram1D * hX; // X position:((e[0]-e[1])/(e[0]+e[1])) Histogram1D * hY; // Y position:((e[2]-e[3])/(e[2]+e[3])) Histogram2D * hXY; // 2D position plot: ((e[2]-e[3])/(e[2]+e[3])) versus ((e[0]-e[1])/(e[0]+e[1])) Histogram1D * he0; // e0: signal 0 Histogram1D * he1; // e1: signal 1 Histogram1D * he2; // e2: signal 2 Histogram1D * he3; // e3: signal 3 int tick2ns; float dE, E; unsigned long long dE_t, E_t; float e0, e1, e2, e3; unsigned long long t0, t1, t2, t3; }; inline void MCP::SetUpCanvas(){ setGeometry(0, 0, 2000, 800); //============ histograms hPID = new Histogram2D("MCP", "E", "dE", 100, 0, 5000, 100, 0, 5000, this); layout->addWidget(hPID, 0, 0); hXY = new Histogram2D("2D position plot", "X position", "Y position", 100, -1, 1, 100, -1, 1, this); layout->addWidget(hXY, 0, 1); hXX = new Histogram2D("X1 versus X2", "X2", "X1", 100, 0, 5000, 100, 0, 5000, this); layout->addWidget(hXX, 0, 2); hYY = new Histogram2D("Y1 versus Y2", "Y2", "Y1", 100, 0, 3000, 100, 0, 3000, this); layout->addWidget(hYY, 1, 0); hX = new Histogram1D("X position", "X", 300, -1, 1, this); layout->addWidget(hX, 1, 1); hY = new Histogram1D("Y position", "Y", 300, -1, 1, this); layout->addWidget(hY, 1, 2); /* UNCOMMENT THESE LINES TO SEE INDIVIDUAL SIGNALS he0 = new Histogram1D("Signal 0", "e0", 300, -1, 1, this); layout->addWidget(he0, 0, 3); he1 = new Histogram1D("Signal 1", "e1", 300, -1, 1, this); layout->addWidget(he1, 0, 4); he2 = new Histogram1D("Signal 2", "e2", 300, -1, 1, this); layout->addWidget(he2, 1, 3); he3 = new Histogram1D("Signal 3", "e3", 300, -1, 1, this); layout->addWidget(he3, 1, 4); */ } inline void MCP::UpdateHistograms(){ if( this->isVisible() == false ) return; BuildEvents(false); // call the event builder to build events //============ Get events, and do analysis long eventBuilt = evtbder->eventBuilt; if( eventBuilt == 0 ) return; //============ Get the cut list, if any QList cutList = hPID->GetCutList(); const int nCut = cutList.count(); unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0}; unsigned int count[nCut]={0}; //============ Processing data and fill histograms long eventIndex = evtbder->eventIndex; long eventStart = eventIndex - eventBuilt + 1; if(eventStart < 0 ) eventStart += MaxNEvent; for( long i = eventStart ; i <= eventIndex; i ++ ){ std::vector event = evtbder->events[i]; //printf("-------------- %ld\n", i); if( event.size() == 0 ) return; for( int k = 0; k < (int) event.size(); k++ ){ //event[k].Print(); if( event[k].ch == 0 ) {dE = event[k].energy; dE_t = event[k].timestamp;} if( event[k].ch == 1 ) {E = event[k].energy; E_t = event[k].timestamp;} if( event[k].ch == 2 ) {e0 = event[k].energy; t0 = event[k].timestamp;} if( event[k].ch == 3 ) {e1= event[k].energy; t1 = event[k].timestamp;} if( event[k].ch == 4 ) {e2 = event[k].energy; t2 = event[k].timestamp;} if( event[k].ch == 5 ) {e3= event[k].energy; t3 = event[k].timestamp;} } // printf("(E, dE) = (%f, %f)\n", E, dE); hPID->Fill(E + RandomGauss(0, 100), dE+ RandomGauss(0, 100)); // x, y hXX->Fill(e1, e0); // hYY->Fill(e3, e2); hXY->Fill(((e0-e1)/(e0+e1)),((e2-e3)/(e2+e3))); hX->Fill(((e0-e1)/(e0+e1))); hY->Fill(((e2-e3)/(e2+e3))); he0->Fill(e0); he1->Fill(e1); he2->Fill(e2); he3->Fill(e3); //check events inside any Graphical cut and extract the rate for(int p = 0; p < cutList.count(); p++ ){ if( cutList[p].isEmpty() ) continue; if( cutList[p].containsPoint(QPointF(E, dE), Qt::OddEvenFill) ){ if( dE_t < tMin[p] ) tMin[p] = dE_t; if( dE_t > tMax[p] ) tMax[p] = dE_t; count[p] ++; //printf(".... %d \n", count[p]); } } } hPID->UpdatePlot(); hXX->UpdatePlot();// hYY->UpdatePlot(); hXY->UpdatePlot(); hX->UpdatePlot(); hY->UpdatePlot(); he0->UpdatePlot(); he1->UpdatePlot(); he2->UpdatePlot(); he3->UpdatePlot(); //========== output to Influx QList cutNameList = hPID->GetCutNameList(); for( int p = 0; p < cutList.count(); p ++){ if( cutList[p].isEmpty() ) continue; double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec double rate = count[p]*1.0/(dT); //printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]); //printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate); influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate)); influx->WriteData(dataBaseName); influx->ClearDataPointsBuffer(); } } #endif