FSUDAQ_Qt6/SplitPoleAnalyzer.h
2023-08-14 11:26:52 -04:00

487 lines
15 KiB
C++

#ifndef SPLITPOLEANLAYZER_H
#define SPLITPOLEANLAYZER_H
/*********************************************
* This is online analyzer for Split-Pole at FSU
*
* It is a template for other analyzer.
*
* Any new analyzer add to added to FSUDAQ.cpp
* 1) add include header
* 2) in OpenAnalyzer(), change the new
*
* add the source file in FSUDAQ_Qt6.pro then compile
* >qmake6 FSUDAQ_Qt6.pro
* >make
*
* ******************************************/
#include "Analyser.h"
#include "Isotope.h"
#include <QRandomGenerator>
#include <cmath>
#include <random>
// static double randZeroToOne() {
// return static_cast<double>(rand()) / RAND_MAX;
// }
// // Box-Muller transform to generate random Gaussian numbers
// static double generateGaussian(double mean, double stddev) {
// static bool hasSpare = false;
// static double spare;
// if (hasSpare) {
// hasSpare = false;
// return mean + stddev * spare;
// } else {
// double u, v, s;
// do {
// u = 2.0 * randZeroToOne() - 1.0;
// v = 2.0 * randZeroToOne() - 1.0;
// s = u * u + v * v;
// } while (s >= 1.0 || s == 0.0);
// s = std::sqrt(-2.0 * std::log(s) / s);
// spare = v * s;
// hasSpare = true;
// return mean + stddev * u * s;
// }
// }
namespace ChMap{
const short ScinR = 0;
const short ScinL = 1;
const short dFR = 9;
const short dFL = 8;
const short dBR = 10;
const short dBL = 11;
const short Cathode = 7;
const short AnodeF = 13;
const short AnodeB = 15;
};
const double c = 299.792458; // mm/ns
const double pi = M_PI;
const double deg2rad = pi/180.;
class SplitPoleHit{
public:
SplitPoleHit(){
Clear();
}
unsigned int eSR; unsigned long long tSR;
unsigned int eSL; unsigned long long tSL;
unsigned int eFR; unsigned long long tFR;
unsigned int eFL; unsigned long long tFL;
unsigned int eBR; unsigned long long tBR;
unsigned int eBL; unsigned long long tBL;
unsigned int eCath; unsigned long long tCath;
unsigned int eAF; unsigned long long tAF;
unsigned int eAB; unsigned long long tAB;
float eSAvg;
float x1, x2, theta;
float xAvg;
void CalZoffset(QString targetStr, QString beamStr, QString recoilStr, double bfieldT, double angleDeg, double energyMeV){
target.SetIsoByName(targetStr.toStdString());
beam.SetIsoByName(beamStr.toStdString());
recoil.SetIsoByName(recoilStr.toStdString());
// target.SetIso(12, 6);
// beam.SetIso(2,1);
// recoil.SetIso(1,1);
Bfield = bfieldT; // Tesla
angleDegree = angleDeg; // degree
beamKE = energyMeV; // MeV
heavyRecoil.SetIso(target.A + beam.A - recoil.A, target.Z + beam.Z - recoil.Z);
double Q = target.Mass + beam.Mass - recoil.Mass - heavyRecoil.Mass;
double haha1 = sqrt(beam.Mass + beamKE + recoil.Mass)/(recoil.Mass + heavyRecoil.Mass) / cos(angleDegree * deg2rad);
double haha2 = ( beamKE * ( heavyRecoil.Mass + beam.Mass) + heavyRecoil.Mass * Q) / (recoil.Mass + heavyRecoil.Mass);
double recoilKE = pow(haha1 + sqrt(haha1*haha1 + haha2), 2);
printf("Q value : %f \n", Q);
printf("proton enegry : %f \n", recoilKE);
double recoilP = sqrt( recoilKE* ( recoilKE + 2*recoil.Mass));
double rho = recoilP/(target.Z * Bfield * c); // in m
double haha = sqrt( recoil.Mass * beam.Mass * beamKE / recoilKE );
double k = haha * sin(angleDegree * deg2rad) / ( recoil.Mass + heavyRecoil.Mass - haha * cos(angleDegree * deg2rad));
const double SPS_DISPERSION = 1.96; // x-position/rho
const double SPS_MAGNIFICATION = 0.39; // in x-position
zOffset = -1000.0 * rho * k * SPS_DISPERSION * SPS_MAGNIFICATION;
printf("rho: %f m; z-offset: %f cm\n", rho, zOffset);
}
void Clear(){
eSR = 0; tSR = 0;
eSL = 0; tSL = 0;
eFR = 0; tFR = 0;
eFL = 0; tFL = 0;
eBR = 0; tBR = 0;
eBL = 0; tBL = 0;
eCath = 0; tCath = 0;
eAF = 0; tAF = 0;
eAB = 0; tAB = 0;
eSAvg = -1;
x1 = NAN;
x2 = NAN;
theta = NAN;
xAvg = NAN;
}
void CalData(){
if( eSR > 0 && eSL > 0 ) eSAvg = (eSR + eSL)/2;
if( eSR > 0 && eSL == 0 ) eSAvg = eSR;
if( eSR == 0 && eSL > 0 ) eSAvg = eSL;
if( tFR > 0 && tFL > 0 ) x1 = (tFL - tFR)/2./2.1;
if( tBR > 0 && tBL > 0 ) x2 = (tBL - tBR)/2./1.98;
if( !std::isnan(x1) && !std::isnan(x2)) {
if( x2 > x1 ) {
theta = atan((x2-x1)/36.0);
}else if(x2 < x1){
theta = pi + atan((x2-x1)/36.0);
}else{
theta = pi * 0.5;
}
double w1 = 0.5 - zOffset/4.28625;
xAvg = w1 * x1 + (1-w1)* x2;
}
}
private:
Isotope target;
Isotope beam;
Isotope recoil;
Isotope heavyRecoil;
double Bfield;
double angleDegree;
double beamKE;
double zOffset;
};
//^===========================================
//^===========================================
class SplitPole : public Analyzer{
Q_OBJECT
public:
SplitPole(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){
SetUpdateTimeInSec(1.0);
RedefineEventBuilder({0}); // only build for the 0-th digitizer, otherwise, it will build event accross all digitizers
tick2ns = digi[0]->GetTick2ns();
SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100.
evtbder = GetEventBuilder();
evtbder->SetTimeWindow(500);
//========== use the influx from the Analyzer
influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/");
dataBaseName = "testing";
SetUpCanvas();
leTarget->setText("12C");
leBeam->setText("d");
leRecoil->setText("p");
sbBfield->setValue(0.76);
sbAngle->setValue(20);
sbEnergy->setValue(16);
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
hit.Clear();
}
/// ~SplitPole(); // comment out = defalt destructor
void SetUpCanvas();
public slots:
void UpdateHistograms();
private:
MultiBuilder *evtbder;
// declaie histograms
Histogram2D * hPID;
Histogram1D * h1;
Histogram1D * h1g;
Histogram1D * hMulti;
int tick2ns;
SplitPoleHit hit;
RSpinBox * sbBfield;
QLineEdit * leTarget;
QLineEdit * leBeam;
QLineEdit * leRecoil;
RSpinBox * sbEnergy;
RSpinBox * sbAngle;
};
inline void SplitPole::SetUpCanvas(){
setGeometry(0, 0, 1600, 1000);
{//^====== magnet and reaction setting
QGroupBox * box = new QGroupBox("Configuration", this);
layout->addWidget(box, 0, 0);
QGridLayout * boxLayout = new QGridLayout(box);
boxLayout->setAlignment(Qt::AlignTop | Qt::AlignLeft);
box->setLayout(boxLayout);
QLabel * lbBfield = new QLabel("B-field [T] ", box);
lbBfield->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbBfield, 0, 2);
sbBfield = new RSpinBox(box);
sbBfield->setDecimals(3);
sbBfield->setSingleStep(0.05);
boxLayout->addWidget(sbBfield, 0, 3);
QLabel * lbTarget = new QLabel("Target ", box);
lbTarget->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbTarget, 0, 0);
leTarget = new QLineEdit(box);
boxLayout->addWidget(leTarget, 0, 1);
QLabel * lbBeam = new QLabel("Beam ", box);
lbBeam->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbBeam, 1, 0);
leBeam = new QLineEdit(box);
boxLayout->addWidget(leBeam, 1, 1);
QLabel * lbRecoil = new QLabel("Recoil ", box);
lbRecoil->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbRecoil, 2, 0);
leRecoil = new QLineEdit(box);
boxLayout->addWidget(leRecoil, 2, 1);
QLabel * lbEnergy = new QLabel("Beam Energy [MeV] ", box);
lbEnergy->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbEnergy, 1, 2);
sbEnergy = new RSpinBox(box);
sbEnergy->setDecimals(3);
sbEnergy->setSingleStep(1.0);
boxLayout->addWidget(sbEnergy, 1, 3);
QLabel * lbAngle = new QLabel("SPS Angle [Deg] ", box);
lbAngle->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbAngle, 2, 2);
sbAngle = new RSpinBox(box);
sbAngle->setDecimals(3);
sbAngle->setSingleStep(1.0);
boxLayout->addWidget(sbAngle, 2, 3);
boxLayout->setColumnStretch(0, 1);
boxLayout->setColumnStretch(1, 2);
boxLayout->setColumnStretch(2, 1);
boxLayout->setColumnStretch(3, 2);
connect(leTarget, &QLineEdit::returnPressed, this, [=](){
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
});
connect(leBeam, &QLineEdit::returnPressed, this, [=](){
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
});
connect(leRecoil, &QLineEdit::returnPressed, this, [=](){
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
});
connect(sbBfield, &RSpinBox::returnPressed, this, [=](){
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
});
connect(sbAngle, &RSpinBox::returnPressed, this, [=](){
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
});
connect(sbEnergy, &RSpinBox::returnPressed, this, [=](){
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
});
}
//============ histograms
hMulti = new Histogram1D("Multiplicity", "", 10, 0, 10, this);
layout->addWidget(hMulti, 0, 1);
// the "this" make the histogram a child of the SplitPole class. When SplitPole destory, all childs destory as well.
hPID = new Histogram2D("Split Pole PID", "Scin-L", "Anode-Font", 100, 0, 5000, 100, 0, 5000, this);
//layout is inheriatge from Analyzer
layout->addWidget(hPID, 1, 0, 2, 1);
h1 = new Histogram1D("Spectrum", "x", 300, 30, 70, this);
h1->SetColor(Qt::darkGreen);
h1->AddDataList("Test", Qt::red); // add another histogram in h1, Max Data List is 10
layout->addWidget(h1, 1, 1);
h1g = new Histogram1D("Spectrum (gated)", "x", 300, 30, 70, this);
layout->addWidget(h1g, 2, 1);
layout->setColumnStretch(0, 1);
layout->setColumnStretch(1, 1);
//===========fill fake data
// int min = 0;
// int max = 8;
// double meanX[9] = { 500, 500, 1000, 1000, 1000, 1500, 3000, 3000, 3000};
// double stdX[9] = { 100, 100, 300, 300, 300, 100, 500, 500, 500};
// double meanY[9] = {1000, 1000, 3000, 3000, 1500, 2000, 500, 500, 500};
// double stdY[9] = { 100, 100, 500, 500, 500, 200, 100, 100, 100};
// int mu[9] = {1, 2, 3, 4, 5, 6, 6, 5, 6};
// double ex[9] = {60, 60, 50, 45, 45, 45, 45, 42, 42};
// for( int i = 0; i < 2456; i++){
// int index = QRandomGenerator::global()->bounded(min, max + 1);
// double radX = generateGaussian(meanX[index], stdX[index]);
// double radY = generateGaussian(meanY[index], stdY[index]);
// double radEx = generateGaussian(ex[index], 0.1);
// double rad = generateGaussian(55, 20);
// printf("%5d | %2d %6f %6f %6f %6f\n", i, index, radX, radY, radEx, rad);
// hPID->Fill(radX, radY);
// if( i % 3 != 0 ){
// h1-> Fill(radEx);
// }else{
// h1->Fill(rad);
// }
// hMulti->Fill(mu[index]);
// if ( i% 3 != 0) h1g->Fill(radEx);
// }
// hPID->UpdatePlot();
// h1->UpdatePlot();
// hMulti->UpdatePlot();
// h1g->UpdatePlot();
}
inline void SplitPole::UpdateHistograms(){
BuildEvents(); // call the event builder to build events
//============ Get events, and do analysis
long eventBuilt = evtbder->eventBuilt;
if( eventBuilt == 0 ) return;
//============ Get the cut list, if any
QList<QPolygonF> cutList = hPID->GetCutList();
const int nCut = cutList.count();
unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0};
unsigned int count[nCut]={0};
//============ Processing data and fill histograms
long eventIndex = evtbder->eventIndex;
long eventStart = eventIndex - eventBuilt + 1;
if(eventStart < 0 ) eventStart += MaxNEvent;
for( long i = eventStart ; i <= eventIndex; i ++ ){
std::vector<Hit> event = evtbder->events[i];
//printf("-------------- %ld\n", i);
hMulti->Fill((int) event.size());
//if( event.size() < 9 ) return;
if( event.size() == 0 ) return;
hit.Clear();
for( int k = 0; k < (int) event.size(); k++ ){
//event[k].Print();
if( event[k].ch == ChMap::ScinR ) {hit.eSR = event[k].energy; hit.tSR = event[k].timestamp;}
if( event[k].ch == ChMap::ScinL ) {hit.eSL = event[k].energy; hit.tSL = event[k].timestamp;}
if( event[k].ch == ChMap::dFR ) {hit.eFR = event[k].energy; hit.tFR = event[k].timestamp;}
if( event[k].ch == ChMap::dFL ) {hit.eFL = event[k].energy; hit.tFL = event[k].timestamp;}
if( event[k].ch == ChMap::dBR ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == ChMap::dBL ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == ChMap::Cathode ) {hit.eCath = event[k].energy; hit.tCath = event[k].timestamp;}
if( event[k].ch == ChMap::AnodeF ) {hit.eAF = event[k].energy; hit.tAF = event[k].timestamp;}
if( event[k].ch == ChMap::AnodeB ) {hit.eAB = event[k].energy; hit.tAB = event[k].timestamp;}
}
hit.CalData();
hPID->Fill(hit.eSL, hit.eSR); // x, y
h1->Fill(hit.eSL);
h1->Fill(hit.eSR, 1);
//check events inside any Graphical cut and extract the rate, using tSR only
for(int p = 0; p < cutList.count(); p++ ){
if( cutList[p].isEmpty() ) continue;
if( cutList[p].containsPoint(QPointF(hit.eSL, hit.eSR), Qt::OddEvenFill) ){
if( hit.tSR < tMin[p] ) tMin[p] = hit.tSR;
if( hit.tSR > tMax[p] ) tMax[p] = hit.tSR;
count[p] ++;
//printf(".... %d \n", count[p]);
if( p == 0 ) h1g->Fill(hit.eSR);
}
}
}
hPID->UpdatePlot();
h1->UpdatePlot();
hMulti->UpdatePlot();
h1g->UpdatePlot();
QList<QString> cutNameList = hPID->GetCutNameList();
for( int p = 0; p < cutList.count(); p ++){
if( cutList[p].isEmpty() ) continue;
double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec
double rate = count[p]*1.0/(dT);
//printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]);
//printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate);
influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate));
influx->WriteData(dataBaseName);
influx->ClearDataPointsBuffer();
}
}
#endif